
ORNL REPORT
ORNL/TM-2015/596
Unlimited Release
Printed February 2016

User Manual: TASMANIAN Sparse
Grids v3.1

M. Stoyanov

Prepared by
Oak Ridge National Laboratory
One Bethel Valley Road, Oak Ridge, Tennessee 37831

The Oak Ridge National Laboratory is operated by UT-Battelle, LLC,
for the United States Department of Energy under Contract DE-AC05-00OR22725.
Approved for public release; further dissemination unlimited.

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of
Energy (DOE) Information Bridge.

Web site http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source.

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Oak Ridge, TN 37831
Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639
Fax 703-605-6900
E-mail info@ntis.gov
Web site http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
(ETDE) representatives, and International Nuclear Information System (INIS) representatives from
the following source.

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Web site http://www.osti.gov/contact.html

NOTICE

This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government,
nor any agency thereof, nor any of their employees, nor any of their con-
tractors, subcontractors, or their employees, make any warranty, express
or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, pro-
cess, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommenda-
tion, or favoring by the United States Government, any agency thereof,
or any of their contractors or subcontractors. The views and opinions
expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

ii

ORNL/TM-2015/596

Computer Science and Mathematics Division

USER MANUAL: TASMANIAN SPARSE GRIDS V3.1

M. Stoyanov ∗

Date Published: February 2016

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6283
managed by

UT-BATTELLE, LLC
for the

U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

∗Computer Science and Mathematics Division, Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-
6367, Oak Ridge, TN 37831-6164 (stoyanovmk@ornl.gov).

CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . vii

ABSTRACT . 1

ACKNOWLEDGEMENTS . 1

1 Quick Overview . 2

2 Global Grids . 5
2.1 General construction . 5
2.2 Approximation error . 6
2.3 Sequence Grid . 8
2.4 Refinement . 9
2.5 One dimensional rules . 10

3 Local Polynomial Grids . 14
3.1 Hierarchical interpolation rule . 14
3.2 Adaptive refinement . 15
3.3 One dimensional rules . 17
3.4 Wavelets . 21

4 Compilation . 23
4.1 Unix Based Systems (Linux/MacOSX) . 23
4.2 Windows using Mircosoft Visual C++ 2015 . 24

5 LIBTASMANIANSPARSEGRIDS (libtsg) . 25
5.1 Constructor TasmanianSparseGrid() . 25
5.2 Destructor TasmanianSparseGrid() . 25
5.3 function getVersion() . 25
5.4 function getLicense() . 25
5.5 function makeGlobalGrid() . 26
5.6 function makeSequenceGrid() . 28
5.7 function makeLocalPolynomialGrid() . 28
5.8 function makeWaveletGrid() . 29
5.9 function makeFullTensorGrid() . 29
5.10 functions recycle***Grid() . 29
5.11 functions update***Grid() . 29
5.12 functions update***Grid() . 30
5.13 function write() . 30
5.14 function read() . 30
5.15 function write() . 30
5.16 function read() . 30
5.17 function setTransformAB() . 31
5.18 function setDomainTransform() . 31
5.19 function isSetDomainTransform() . 31

iii

5.20 function clearTransformAB() . 31
5.21 function clearTransformAB() . 31
5.22 function getTransformAB() . 32
5.23 function getDomainTransform() . 32
5.24 function getNumDimensions() . 32
5.25 function getNumOutputs() . 32
5.26 function getOneDRule() . 32
5.27 function getOneDRuleDescription() . 33
5.28 function getCustomRuleDescription() . 33
5.29 function getAlpha()/getBeta() . 33
5.30 function getOrder() . 33
5.31 function getNum***() . 34
5.32 function get***Points() . 34
5.33 function getWeights() . 34
5.34 function getQuadratureWeights() . 35
5.35 function getInterpolantWeights() . 35
5.36 function getInterpolationWeights() . 35
5.37 function getNumNeededPoints() . 36
5.38 function loadNeededPoints() . 36
5.39 function evaluate() . 36
5.40 function integrate() . 36
5.41 function is***() . 37
5.42 function setRefinement() . 37
5.43 function setAnisotropicRefinement() . 37
5.44 function setSurplusRefinement() - global version . 37
5.45 function setSurplusRefinement() - local version . 38
5.46 function clearRefinement() . 38
5.47 function getPolynomialIndexes() . 38
5.48 function getPolynomialSpace() . 39
5.49 function printStats() . 39
5.50 functions getSurpluses() and getPointIndexes() . 39
5.51 Examples . 39

6 TASGRID . 40
6.1 Basic Usage . 40
6.2 Command: -h, help, -help, –help . 40
6.3 Command: -listtypes . 40
6.4 Command: -version or -info . 40
6.5 Command: -test . 41
6.6 Command: -makegrid . 41
6.7 Command: -makeglobal . 41
6.8 Command: -makesequence . 42
6.9 Command: -makelocalpoly . 43
6.10 Command: -makewavelet . 43
6.11 Command: -makequadrature . 44
6.12 Command: -recycle . 44
6.13 Command: -makeupdate . 44
6.14 Command: -getquadrature . 45

iv

6.15 Command: -getpoints . 45
6.16 Command: -getinterweights . 45
6.17 Command: -getneededpoints . 46
6.18 Command: -loadvalues . 46
6.19 Command: -evaluate . 47
6.20 Command: -integrate . 47
6.21 Command: -getanisotropy . 47
6.22 Command: -refine . 48
6.23 Command: -refineaniso . 48
6.24 Command: -refinesurp . 48
6.25 Command: -cancelrefine . 49
6.26 Command: -getpoly . 49
6.27 Command: -summary . 49
6.28 Commands: -getsurpluses, -getpointindexes . 50
6.29 Matrix File Format . 50

7 MATLAB Interface . 51
7.1 function tsgGetPaths() . 51
7.2 functions tsgReadMatrix() and tsgWriteMatrix() . 52
7.3 functions tsgCleanTempFiles() . 52
7.4 function tsgListGridsByName() . 52
7.5 function tsgDeleteGrid()/tsgDeleteGridByName() . 52
7.6 function tsgReloadGrid() . 52
7.7 function tsgCopyGrid() . 52
7.8 function tsgWriteCustomRuleFile() . 52
7.9 function tsgExample() . 53
7.10 Other functions . 53
7.11 Saving a Grid . 53
7.12 Avoiding Some Problems . 53

Appendix

A Custom Rule Specification . 54

v

LIST OF FIGURES

1 Local polynomial points (rule localp) and functions, left to right: linear, quadratic, and
cubic functions. 18

2 Semi-local polynomial points (rule semilocalp) and functions, left to right: linear, quadratic,
and cubic functions. 19

3 Semi-local polynomial points (rule localp0) and functions, left to right: linear, quadratic,
and cubic functions. 20

4 The first three levels for wavelets of order 1 (left) and 3 (right). The functions associated
with x13, x14, x15, and x16 are purposely omitted to reduce the clutter on the plot, since the
funcitons are mirror images of the those associated with x12, x11, x10, and x9 respectively. . 22

vi

LIST OF TABLES

1 Summary of the available Chebyshev rules with the names used by the C++, tasgird and
MATLAB interfaces. 11

2 Summary of the available Chebyshev rules with the names used by the C++, tasgird and
MATLAB interfaces. 12

3 Summary of the available greedy sequence rules with the names used by the C++, tasgird
and MATLAB interfaces. 13

vii

ABSTRACT

This documents serves to explain the functionality of the Sparse Grid module of the Toolkit for Adaptive
Stochastic Modeling And Non-Intrusive Approximation (TASMANIAN). The document covers the three
main components, the libtasmaniansparsegrids library, the tasgrid wrapper and the MATLAB interface.

ACKNOWLEDGEMENTS

The ORNL is operated by UT-Battelle, LLC, for the United States Department of Energy under Contract
DE-AC05-00OR22725.

1

1 Quick Overview

Sparse Grids refers to a family of algorithms for approximation of multidimensional functions and inte-
grals, where the approximation operator is constructed as a linear combination of tensors of multiple one
dimensional operators [1–3, 9, 11–19, 21–23, 25, 26]. The TASMANIAN sparse grids library (henceforth
called “TASMANIAN” or “the library”) implements a wide variety of sparse grids methods with different
one dimensional operators and different ways of constructing the linear combination of tensors.

Let Γak,bk = [ak, bk] ⊂ R, for k = 1, 2, . . . , d, indicate a set of one dimensional intervals and let
Γa,b =

⊗d
k=1 Γak,bk ⊂ Rd be a d-dimensional sparse grids domain. A sparse grid consists of a set of points

{xi}Ni=1 ∈ Γa,b and associated numerical quadrature weights {xi}Ni=1 ∈ R or interpolation basis functions
{φi(x)}Ni=1 ∈ C0(Γa,b). Usually, ak and bk are finite, however, Gauss-Hermite and Gauss-Laguerre rules
allow for the use of unbounded domain. Note that TASMANIAN constructs grids using the canonical
interval [−1, 1] and the result is then translated (via a linear transformation) to the specific [ak, bk]; also
Gauss-Hermite and Gauss-Laguerre rules use canonical intervals (−∞,+∞) and [0,∞) respectively.

Let f(x) : Γ → R indicate a d-dimensional function, where w.l.o.g. we assume Γ is the canonical
domain. We consider two types of approximations, point-wise approximations f̃(x) where f̃(x) ≈ f(x)
for all x ∈ Γ and numerical integration Q(f) where Q(f) ≈

∫
Γ f(x)ρ(x)dx. The weight ρ(x) is specific

to the one dimensional rule that induces the grid; most rules assume uniform weight ρ(x) = 1, however,
Gauss-Chebyshev, Gegenbauer, Jacobi, Hermite, and Laguerre, rules use different weights (see Table 2).
Note: TASMANIAN can handle functions with multiple outputs (e.g., vector valued functions), then f̃(x)
and Q(f) have a corresponding number of outputs.

Point-wise approximations can be implemented in two different ways, since both ways result in identical
f̃(x) there is no official language to distinguish between the two method, hence we’ll use the terms internal
and adjoint. The internal form is

f̃(x) =
N∑
i=1

ciφi(x), (1.1)

where φi(x) are basis functions determined by the one dimensional rule and the chosen set of tensors, and
the weights ci are computed from the values of f(xi). The term internal refers to the fact that the software
library needs direct access to the values f(xi) in order to compute the coefficients ci. In contrast, the adjoint
form is given by

f̃(x) =

N∑
i=1

ψi(x)f(xi), (1.2)

where ψi(x) depend on the 1-D rule and tensors and can be computed independent from f(xi). Using
the adjoint approach, TASMANIAN can approximate functions with arbitrary output and arbitrary data-
structures, i.e., the library can generate the ψi(x) weights and the sum can be computed by user written or
third party code. Note that (1.1) and (1.2) result in point-wise identical approximation, however, in general,
the adjoint approach is usually significantly more expensive (computationally). When φi(x) are Lagrange
polynomials, then ci = f(xi) and ψi(x) = φi(x) and both approximation methods are computationally
equivalent.

In general, sparse grids approximations are not interpolatory, however, when the underlying one dimen-
sional rule is nested (i.e., the nodes at level l are a subset of the nodes at level l + 1), then f̃(xi) = f(xi)
at all grid points {xi}Ni=1. The Gauss rules implemented in TASMANIAN (except Gauss-Patterson) and the

2

Chebyshev rule are non-nested, all other rules are nested. In general, nested grids have fewer points which
leads to fewer evaluations of f(xi) and nesting allows the employment of various refinement strategies.
TASMANIAN implements two types of refinement based on hierarchical surpluses [22] and anisotropic
quasi-optimal polynomial spaces [23].

Employing numerical quadrature, the integral of f(x) is approximated as

∫
Γ
f(x)ρ(x)dx ≈ Q[f] =

N∑
i=1

wif(xi), (1.3)

where the points {xi}Ni=1 and the weights {wi}Ni=1 depend on the one dimensional rule and the selec-
tion of tensors. In general, Q(f) can be constructed from f̃(x) by integrating the approximation (i.e.,
wi =

∫
Γ ψi(x)dx), however, Gauss rules allow for better accuracy by selecting the points xi at the roots

of polynomials that are orthogonal with respect to ρ(x) (see table 2). Gauss-Patterson and Gauss-Legendre
rules use the same uniform ρ(x), however, Gauss-Patterson points have the additional constraint of being
nested. In one dimension, Gauss-Legendre rule is more accurate than Gauss-Patterson, however, in a mul-
tidimensional setting the nested property of Gauss-Patterson leads to better accuracy per number of points.
Unlike Gauss-Legendre, the Gauss-Patterson points and weights are very difficult to compute and this library
provides only the first 9 levels as hard-coded constants.

TASMANIAN implements a variety of different grids and those are grouped into 4 categories:

• Global Grids: f̃(x) is constructed using Lagrange polynomials and the grids are suitable for approx-
imating smooth and analytic functions. All Gauss integration rules fall in this category. See §2.

• Sequence Grids: for a class of rules (namely Leja, R-Leja, R-Leja-Shifted, min/max-Lebesgue and
min-Delta, see Table 3) the sequence grids offer an alternative implementation based on Newton
polynomials. Sequence grids can evaluate f̃(x) (for a given x) much faster, however, speed comes
with higher storage overhead as well as higher computational cost for most other operations, especially
loading the values and using ajoint interpolation. Note that the difference between global and sequence
grids is only in implementation, otherwise a sequence and a global grid with the same rule and points
would result in identical f̃(x). See §2.

• Local Polynomial Grids: suitable for non-smooth functions with locally sharp behavior. Interpola-
tion is based on hierarchical piece-wise polynomials with local support and varying order. See §3.

• Wavelet Grids: are similar to the local polynomials, however, using wavelet basis. Coupled with
local refinement, often times wavelet grids provide the same accuracy with fewer abscissas. See §3.

The code consists of three main components:

• libtasmaniansparsegrids.a: the main component of TASMANIAN is the C++ library that implements
the TasmanianSparseGrid class that encapsulates all of the available capabilities. See Section 5.

• tasgrid: an executable that provides a command line interface to the library. The executable reads
and writes data to text files and every command generally reads an instance of TasmanianSparseGrid
class from a text file, calls a function from the class, and writes the modified class back to a text file.
See Section 6.

3

• MATLAB Interface: which is a series of MATLAB functions that call the executable tasgrid and read
the result into MATLAB matrices. Note: the MATLAB interface does not use .mex files, thus the
library can be compiled with a wider range of compilers than those supported by MATLAB, however,
the usage of the interface is somewhat different than regular mex files. See Section 7.

In the rest of this document, in §2 we provide a brief description of the construction of sparse grids from
global rules, and in §3 we describe the local rules. In §4 we give a guide to compiling the C++ library and
in §5 we describe the TasmanianSparseGrid class. In §6 we list the functions of the command line wrapper,
and in §7 we describe the installation and usage of the MATLAB interface. Appendix A shows the format
of a file with a user specified integration or interpolation rule.

4

2 Global Grids

2.1 General construction

Let {xj}∞j=1 ∈ R denote a sequence of distinct points (in either a canonical or transformed interval Γa,b),
and let m : N → N be a strictly increasing growth function. We define a one dimensional nested family of
interpolants {Um(l)}∞l=0, where Um(l) is associated with the first m(l) points {xj}m(l)

j=1 and Lagrange basis

functions {φlj(x)}m(l)
j=1 defined by φlj(x) =

∏m(l)
i=1,i 6=j

x−xi
xj−xi , i.e.,

f̃ (l)(x) = Um(l)[f](x) =

m(l)∑
j=1

f(xj)φ
l
j(x). (2.1)

The corresponding numerical quadrature is given by∫
f(x)ρ(x)dx ≈ Q[f] =

m(l)∑
j=1

wljf(xj), (2.2)

where wlj =
∫
φlj(x)ρ(x)dx. In a non-nested case, different nodes are associated with each level, i.e.,

{{xlj}
m(l)
j=1 }∞l=0 and the basis function and operators are defined accordingly. Examples of nested and non-

nested one dimensional rules are listed in Tables 1, 2, and 3.

The point-wise approximation and quadrature construction can be expressed in the same operator nota-
tion, hence, we define the surplus operators as

∆m(l) = Um(l) − Um(l−1), or ∆m(l) = Qm(l) −Qm(l−1) (2.3)

depending on whether we are interested in constructing f̃(x) or Q[f]. We also use the convention that
∆m(0) = Um(0) or ∆m(0) = Qm(0).

The d-dimensional tenor operators are given by

∆m(i) =

d⊗
k=1

∆m(ik), Um(i) =

d⊗
k=1

Um(ik), Qm(i) =

d⊗
k=1

Qm(ik)

where we assume standard multi-index notation1. A sparse grid operator is defined as

GΘ[f] =
∑
i∈Θ

∆m(i), (2.4)

where Θ is a lower set2. An explicit form of the points associated with the sparse grid can be obtained by
first defining the tensors

m(i) =

d⊗
k=1

m(ik), xj =

d⊗
k=1

xjk ,

1For the remainder of this document we let N be the set of natural numbers including zero, and Λ,Θ ⊂ Nd will denote set of
multi-indexes. For any two vectors, we define xν =

∏d
k=1 x

νk
k with the usual convention 00 = 1.

2A set Λ is caller lower or admissible if ν ∈ Λ implies {i ∈ Nd : i ≤ ν} ⊂ Λ, where i ≤ ν if and only if ik ≤ νk for all
1 ≤ k ≤ d.

5

then the points associated with (2.4) are given by

{xj}j∈X(Θ), where X(Θ) =
⋃
i∈Θ

{1 ≤ j ≤m(i)}. (2.5)

In the non-nested case, X(Θ) consists of pairs of multi-indexes X(Θ) =
⋃
i∈Θ

⋃
1≤j≤m(i){(i, j)}, and the

points are {xij}(i,j)∈X(Θ) where xij =
⊗d

k=1 x
ik
jk

.

For every lower set Θ, there is a set of (integer) weights {tj}j∈Θ(L) that satisfy
∑
j≤i,j∈Θ(L) tj = 1 for

every i ∈ Θ(L), i.e., ti solve a linear system of equations. Then,

GΘ[f] =
∑
i∈Θ

∆m(i) =
∑
i∈Θ

tiUm(i), (2.6)

or in the context of integration GΘ[f] =
∑
i∈Θ tiQm(i). Thus, we explicitly write the Lagrange basis

functions and quadrature weights as

φj(x) =
∑

i∈Θ,m(i)≥j

ti

d∏
k=1

φikjk , (2.7)

where each φikjk is evaluated at the corresponding k-th component of x and we note that in the nested case
φj(x) = ψj(x) where ψj(x) are defined in (1.2). Similarly, the quadrature weights are given by

wj =
∑

i∈Θ,m(i)≥j

ti

d∏
k=1

wikjk . (2.8)

Therefore, the explicit form of the sparse grids approximation is given by

f̃Θ(x) =
∑

j∈X(Θ)

f(xj)φj(x), QΘ[f] =
∑

j∈X(Θ)

f(xj)wj . (2.9)

For the non-nested case, we have

f̃Θ(x) =
∑

(i,j)∈X(Θ)

f(xij)ti

d∏
k=1

φikjk , QΘ[f] =
∑

(i,j)∈X(Θ)

f(xij)ti

d∏
k=1

wikjk . (2.10)

Note, that some non-nested rules may share points, e.g., all one dimensional Gauss-Legendre rules with
odd number of points include 0, thus, it is possible to have the same point for different index pairs (i, j).
TASMANIAN automatically groups the functions and weights associated with those points and the library
uses only unique points.

2.2 Approximation error

First we consider the polynomial space3 for which the approximation is exact (i.e., no error). For interpola-
tion Um(l)[p] = p for all p ∈ Pm(l)−1 and for quadrature rules there is a non-decreasing function q : N→ N
so that Qm(l)[p] = p for all p ∈ Pq(l). For Gauss rules q(l) = 2m(l) − 1, except Gauss-Patterson where

3P l = span{xν : ν ≤ l} and for a lower multi-index set define PΛ = span{xν : ν ≤ i}i∈Λ.

6

q(l) = 3
2m(l) − 1

2 . For other rules generally q(l) = m(l) − 1 except for rules with symmetric and odd
number of points (e.g., Clenshaw-Curtis), where q(l) = m(l) since any symmetric rule integrates exactly
all odd power monomials.

For a general sparse grid point-wise approximation

GΘ[p] = p, for all p ∈ PΛm(Θ), where Λm(Θ) =
⋃
i∈Θ

{j : j ≤m(i)− 1}. (2.11)

And for numerical quadrature

GΘ[p] = p, for all p ∈ PΛq(Θ), where Λq(Θ) =
⋃
i∈Θ

{j : j ≤ q(i)}4. (2.12)

Thus, Λm(Θ) and Λq(Θ) define the polynomial spaces associated with GΘ.

Let C0(Γ) be the space of all continuous functions f : Γ → R imbued with sup (or L∞) norm
‖f‖C0(Γ) = maxx∈Γ |f(x)|. The point-wise approximation error of a sparse grid is bounded by

‖f −GΘ[f]‖C0(Γ) ≤
(
1 + ‖GΘ‖C0(Γ)

)
inf

p∈PΛm(Θ)

‖f − p‖C0(Γ), (2.13)

where ‖GΘ‖C0(Γ) is the operator norm of GΘ (also called the Lebesgue constant)

‖GΘ‖C0(Γ) = sup
g∈C0(Γ)

‖GΘ[g]‖C0(Γ)

‖g‖C0(Γ)
= max

x∈Γ

∑
j∈X(Θ)

|ψj(x)|.

For the nested case ψj(x) are defined in (2.7) and (2.9), and for the non-nested case ψij(x) are defined in
(2.10) with the repeated points grouped together. The error in quadrature approximation is bounded as

∣∣∣∣∫
Γ
f(x)ρ(x)dx−GΘ[f]

∣∣∣∣ ≤
∫

Γ
ρ(x)dx+

∑
j∈X(Θ)

|wj |

 inf
p∈PΛq(Θ)

‖f − p‖C0(Γ), (2.14)

and for the non-nested case the sum becomes
∑

(i,j)∈X(Θ) |tiwij | where weights corresponding to the same
points are grouped together before taking the absolute value. Note, even if the one dimensional rule inducing
the sparse grid has positive quadrature weights, since ti can be negative, some of wj can be negative.

The classical approach for sparse grids construction is to pre-define Θ according to some formula. Let
ξ,η ∈ Rd be anisotropic weight vectors such that ξk > 0 for all 1 ≤ k ≤ d, and let L indicate the “level”
of the sparse grid approximation (the word “level” here is used loosely as the value of L has meaning only
relative to ξ). The classical anisotropic case takes

Θξ(L) = {i ∈ Nd : ξ · i ≤ L}5, (2.15)

log-corrected or curved selection [23]

Θξ,η(L) = {i ∈ Nd : ξ · i+ η · log(i+ 1) ≤ L}6, (2.16)

4as withm(i) we take q(i) =
⊗d

k=1 q(ik)
5Here · indicates the standard vector dot product i · j =

∑d
k=1 ikjk.

6Here log(i) =
⊗d

k=1 log(ik)

7

hyperbolic cross section
Θξ(L) = {i ∈ Nd : (i+ 1)ξ ≤ L}. (2.17)

Alternatively, the multi-index set Θ can be selected as the smallest lower set that results in a Λm(Θ) (or
Λq(Θ)) that includes a desired polynomial space (see [23] for details). Total degree space

{j ∈ Nd : ξ · j ≤ L} ⊂ Λm(Θ), ⇒ Θξ,m(L) = {i ∈ Nd : ξ ·m(i− 1) ≤ L}7, (2.18)

or using a log-correction

{j ∈ Nd : ξ · j + η · log(j + 1) ≤ L} ⊂ Λm(Θ), ⇒
Θξ,η,m(L) = {i ∈ Nd : ξ ·m(i− 1) + η · log(m(i− 1) + 1) ≤ L}, (2.19)

or hyperbolic cross section space

{j ∈ Nd : (j + 1)ξ ≤ L} ⊂ Λm(Θ), ⇒ Θξ,m(L) = {i ∈ Nd : (m(i− 1) + 1)ξ ≤ L}. (2.20)

Tensor selection types (2.18), (2.19) and (2.20) target corresponding polynomial spaces associated with
point-wise approximation, the corresponding quadrature formulas use q in place of m, i.e., for total degree
space

{j ∈ Nd : ξ · j ≤ L} ⊂ Λq(Θ), ⇒ Θξ,m(L) = {i ∈ Nd : ξ · q(i− 1) + 1 ≤ L}8, (2.21)

or using a log-correction

{j ∈ Nd : ξ · j + η · log(j + 1) ≤ L} ⊂ Λq(Θ), ⇒
Θξ,η,q(L) = {i ∈ Nd : ξ · (q(i− 1) + 1) + η · log(q(i− 1) + 2) ≤ L}, (2.22)

or hyperbolic cross section space

{j ∈ Nd : (j + 1)ξ ≤ L} ⊂ Λq(Θ), ⇒ Θξ,m(L) = {i ∈ Nd : (q(i− 1) + 1)ξ ≤ L}. (2.23)

For example, Θ1,q(L) constructed according to (2.21) will result in GΘ1,q(L) that integrates exactly all

polynomials of total degree up to and including L. Similarly, Θ1,−1
2
,m(L) will result in the dominant

polynomial space defined in Proposition 8 and equation (8) in [4]. For more information about optimal and
quasi-optimal polynomial approximation see [23] and references therein.

2.3 Sequence Grid

A sequence grid is constructed from a one dimensional nested rule with m(l) = l+ 1. The theoretical prop-
erties, i.e., (2.13) and (2.14), are identical to the global grid, however, the sequence grid uses representation
in terms of Newton (as opposed to Lagrange) polynomials. Let

φ1(x) = 1, for j > 1, φj(x) =

j−1∏
i=1

x− xi
xj − xi

, and for j ∈ Nd, φj(x) =

d∏
k=1

φjk ,

7Here for notational convenience we assume that m(−1) = 0.
8Here for notational convenience we assume that q(−1) = −1.

8

where each φjk is evaluated at the corresponding k-th component of x. Then GΘ[f] can be written as

G[f](x) =
∑

j∈X(Θ)

sjφj(x), (2.24)

where the surplus coefficients sj satisfy the linear system of equation∑
1≤j≤i

sjφj(xi) = f(xi), for every i ∈ X(Θ). (2.25)

Note that all sparse grids induced by nested one dimensional rules can be written in the Newton form above,
however, TASMANIAN implements sequence grids only for the case when m(l) = l + 1.

Computing and storing the coefficients sj is more expensive then the weights ti, especially when f(x)
is a vector valued function where each output dimension of f(x) requires a separate set of coefficients.
However, computing the surpluses is a one time cost, followup evaluations of a sequence approximation are
much cheaper since Newton polynomials are easier to construct. Thus, sequence grids are faster when a
large number of evaluations of GΘ[f] are desired.

2.4 Refinement

Global and sequence grids implemented in TASMANIAN support two types of refinement based on sur-
pluses and anisotropic coefficient decay. Given GΘ[f] for some index set Θ, the goal of a refinement
procedure is to produce an updated Θ̂ (with Θ ⊂ Θ̂) such that GΘ̂[f] is more accurate and the additional
indexes included in Θ̂ are “optimal” with respect to properties of f(x) that are “inferred” from GΘ[f]. Note
that refinement is supported only for grids induced by nested rules.

The surplus refinement is implemented only for grids induced by rules with m(l) = l + 1 (sequence
and global grids alike). In that case X(Θ) = Θ + 1 and the refinement strategy considers the hierarchical
surpluses (2.25). The set Θ is then expanded with indexes that are “close” to the indexes associated with
large relative surpluses. Specifically:

Θ̂ = Θ
⋃ ⋃

j∈X(Θ),|sj |>ε·fmax

{
i ∈ Nd :

d∑
k=1

|ik − jk − 1| = 1

} , (2.26)

where fmax = maxj∈X(Θ) |f(xj)| and ε > 0 is user specified tolerance. In the case when f(x) has multiple
outputs, if using a global grids (i.e., with Lagrange representation) then the user must specify one output to
be used by the refinement criteria. The surpluses and fmax will be computed only for that one output. In
contrast, a sequence grid computes and stores the surpluses for all outputs, thus, refinement can be easily
done with either one output or all outputs simultaneously, in which case we refine for those j ∈ X(Θ) such
that |sj | > ε · fmax for any of the outputs. Here the purpose of the fmax is used to normalize the surpluses
in case a vector valued function has outputs with significantly different scaling.

The second type of refinement is labeled anisotropic, and it is a two stage process. First, GΘ[f] is
expresses in terms of orthogonal multivariate Legendre polynomials, then anisotropic weights ξ and η are
inferred from the decay rate of the coefficients. The refinement set Θ̂ is constructed according to (2.18)
or (2.19) so that GΘ̂ includes a desired minimum number of new points, where the minimum number of
new points exploits parallelism in computing the values of f(xj). Legendre expansion is computationally

9

expensive, hence grids induced by rules with growth m(l) = l + 1 use hierarchical surpluses in place of
the Legendre coefficients. As before, when f(x) has multiple outputs, sequence and global grids can focus
on a single output, and sequence grids can considers the largest normalized surplus, i.e., largest |sj |/fmax

among all outputs. For more details on this type of refinement, see [23].

2.5 One dimensional rules

2.5.1 Chebyshev rules

Roots and extrema of Chebyshev polynomials are a common choice of one dimensional interpolation and
integration rules and TASMANIAN implements several Chebyshev based rules. The non-nested Chebyshev
points are placed at the roots of the polynomials and the growth is eitherm(l) = l+1 orm(l) = 2l+1. The
Clenshaw-Curtis [7] and Clenshaw-Curtis-zero (latter assumes the f(x) is zero at ∂Γ) use only the nested
Chebyshev points and m(l) grows exponentially. The nested Fejer type 2 [10] points use the extrema of the
Chebyshev polynomials and also have exponential m(l).

In addition, the library includes the more recently developedR-Leja points [5]. Define {θj}∞j=1 as

θ1 = 0, θ2 = π, θ3 =
π

2
, for j > 3, θj =

{
θj−1 + π, j is odd
1
2θ j

2
+1, j is even (2.27)

then the R-Leja points are given by xj = cos(θj) and the centered R-Leja points start at x1 = 0, x2 = 1,
x3 = −1, and xj = cos(θj) for j > 3. The growth of theR-Leja rule is m(l) = l + 1 and the centered rule
allows for multiple definitions, namely odd rules m(l) = 2l + 1, theR-Leja double-2 growth defined by

m(0) = 1, m(1) = 3, for l > 1, m(l) = 2b
l
2
c+1

(
1 +

l

2
−
⌊ l

2

⌋)
+ 1, (2.28)

and theR-Leja double-4 rule defined by

m(l) = 1, m(l) = 3, for l > 1, m(l) = 2b
l−2
4
c+2

(
1 +

l − 2

4
−
⌊ l − 2

4

⌋)
+ 1, (2.29)

where bxc = max{z ∈ Z : z ≤ x} is the floor function, see [23] for more details.

TASMANIAN also includes a shiftedR-Leja sequence defined by

x1 = −1

2
, x2 =

1

2
, for j > 2, xj =

{ √
1+x(j+1)/2

2 , j is odd
−xj−1, j is even

(2.30)

which comes with growth m(l) = l + 1 or m(l) = 2(l + 1). Table 1, summarizes all Chebyshev rules.

2.5.2 Gauss rules

The roots of orthogonal polynomials are a common choice for points for numerical integration due to the
high level of precision. Orthogonality is defined with respect to a specific integration weight that often
times requires additional parameters α and/or β. The Gauss rules also include the Hermite and Laguerre

10

Points m(l) q(l) Note:
Chebyshev: rule chebyshev, chebyshev
Non-nested Chebyshev roots m(l) = l + 1 q(l) = l − 1 + (l mod 2) very low Lebesgue constant
Clenshaw-Curtis: rule clenshawcurtis, clenshaw-curtis

Nested Chebyshev roots m(0) = 1, m(l) = 2l + 1 q(l) = m(l) very low Lebesgue constant
Clenshaw-Curtis-Zero: rule clenshawcurtis0, clenshaw-curtis-zero

Nested Chebyshev roots m(l) = 2l+1 − 1 q(l) = 2l assumes f(x) = 0 at ∂Γ

Fejer type 2: rule fejer2, fejer2
Nested Chebyshev extrema m(l) = 2l+1 − 1 q(l) = 2l no points placed at ∂Γ

R-Leja: rule rleja, rleja
See (2.27) m(l) = l + 1 q(l) = l − 1 + (l mod 2) see [5, 23]

R-Leja odd: rule rlejaodd, rleja-odd
CenteredR-Leja m(l) = 2l + 1 q(l) = m(l) see [5, 23]

R-Leja double 2: rule rlejadouble2, rleja-double2
CenteredR-Leja see (2.28) q(l) = m(l) see [5, 23]

R-Leja double 4: rule rlejadouble4, rleja-double4
CenteredR-Leja see (2.29) q(l) = m(l) see [5, 23]

R-Leja shifted: rule rlejashifted, rleja-shifted
See (2.30) m(l) = l + 1 q(l) = m(l)− 1 see [6]

R-Leja shifted even: rule rlejashiftedeven, rleja-shifted-even
See (2.30) m(l) = 2(l + 1) q(l) = 2l + 1 see [6]

Table 1: Summary of the available Chebyshev rules with the names used by the C++, tasgird and MATLAB
interfaces.

polynomials that assume unbounded domain. Gauss rules are usually non-nested, have growthm(l) = l+1,
and precision q(l) = 2l + 1. Odd versions of the rules use growth m(l) = 2l + 1 and q(l) = 4l + 1, and
when coupled with qpcurved or qptotal tensor selection the odd versions of the Gauss rules usually result in
sparse grids with fewer points.

Gauss-Patterson [20] points are a notable exception in most ways. The Patterson construction uses the
Legendre orthogonal polynomials and imposes the additional requirement that the points are nested, which
leads to a rule with growth m(l) = 2l+1 − 1 and precision q(l) = 3

2m(l) − 1
2 = 3 · 2l − 2. Note that the

construction of the Gauss-Patterson points and weights is a computationally expensive and ill-conditioned
problem, TASMANIAN does not include code that computes the point and weight, instead the first 9 levels
are hard-coded into the library. The 9 levels should give sufficient precision for most applications, while the
custom rule capabilities of the library can be used to extend beyond that limit, assuming the user provides
Gauss-Patterson points and weights for higher levels. Summary of all Gauss rules is listed in Table 2.

2.5.3 Greedy rules

TASMANIAN implements a number of rules using sequences of points that are based on greedy optimiza-
tion. The most well known rule uses the Leja points [8], where

x1 = 0, for j > 1 xj+1 = argmax
x∈[−1,1]

j∏
i=1

∣∣x− xi∣∣. (2.31)

11

Canonical Generalized Notes
Integral Integral

Gauss-Patterson: rule gausspatterson, gauss-patterson∫ 1

−1
f(x)dx

∫ b
a
f(x)dx The only nested rule, see paragraph above

Gauss-Legendre: rule gausslegendre, gauss-legendre, rule gausslegendreodd, gauss-legendre-odd∫ 1

−1
f(x)dx

∫ b
a
f(x)dx

Gauss-Chebyshev type 1: rule gausschebyshev1, gauss-chebyshev1, rule gausschebyshev1odd, gauss-chebyshev1-odd∫ 1

−1
f(x)(1− x2)−0.5dx

∫ b
a
f(x)(b− x)−0.5(x− a)−0.5dx

Gauss-Chebyshev type 2: rule gausschebyshev2, gauss-chebyshev2, rule gausschebyshev2odd, gauss-chebyshev2-odd∫ 1

−1
f(x)(1− x2)0.5dx

∫ b
a
f(x)(b− x)0.5(x− a)0.5dx

Gauss-Gegenbauer: rule gaussgegenbauer, gauss-gegenbauer, rule gaussgegenbauerodd, gauss-gegenbauer-odd∫ 1

−1
f(x)(1− x2)αdx

∫ b
a
f(x)(b− x)α(x− a)αdx Must specify α

Gauss-Jacobi: rule gaussjacobi, rule gaussjacobiodd, gauss-jacobi, gauss-jacobi-odd∫ 1

−1
f(x)(1− x)α(1 + x)βdx

∫ b
a
f(x)(b− x)α(x− a)βdx Must specify α, β

Gauss-Laguerre: rule gausslaguerre, rule gausslaguerreodd, gauss-laguerre, gauss-laguerre-odd∫∞
0
f(x)xαe−xdx

∫∞
a
f(x)(x− a)αe−b(x−a)dx Must specify α

Gauss-Hermite: rule gausshermite, gauss-hermite, rule gausshermiteodd, gauss-hermite-odd∫∞
−∞ f(x)xαe−x

2

dx
∫∞
−∞ f(x)(x− a)αe−b(x−a)2dx Must specify α

Table 2: Summary of the available Chebyshev rules with the names used by the C++, tasgird and MATLAB
interfaces.

Similar construction can be done using the extrema of the Lebesgue function

x1 = 0, for j > 1 xj+1 = argmax
x∈[−1,1]

j∑
j′=1

j∏
i=1,i 6=j′

∣∣∣ x− xi
xj′ − xi

∣∣∣. (2.32)

We can greedily minimize the norm of Um(j+1), where x1 = 0 and for j > 1

xj+1 = argmin
x∈[−1,1]

max
y∈[−1,1]

j∏
i=1

∣∣∣y − xi
x− xi

∣∣∣+

j∑
j′=1

∣∣∣ y − x
xj′ − x

∣∣∣ j∏
i=1,i 6=j′

∣∣∣ y − xi
xj′ − xi

∣∣∣ (2.33)

or minimizing the norm of the surplus operator ∆m(j+1), where x1 = 0 and for j > 1

xj+1 = argmin
x∈[−1,1]

max
y∈[−1,1]

1 +

j∑
i=1

j∏
j′=1,j′ 6=i

∣∣∣ x− xj′
xi − xj′

∣∣∣
 j∏

j′=1

∣∣∣y − xj′
x− xj′

∣∣∣. (2.34)

In all cases the growth can be set to m(l) = l+ 1 or m(l) = 2l+ 1. However, unlike theR-Leja points, the
odd rules here do not result in symmetric distribution of the points, hence q(l) = m(l)− 1 (and q(0) = 1).
For a numerical survey of the properties of interpolants constructed from the above sequences, see [23].
Note that quadrature rules using the above sequences can potentially result in zero weights (i.e., wj = 0
for some j), TASMANIAN does NOT automatically check if the weights are zero. The greedy rules are
intended for interpolation purposes and are not the best rules to use for numerical integration. A list of the
greedy rules is given in Table 3.

12

Points m(l) Points m(l)

Leja: rule leja, leja Leja odd: rule lejaodd, leja-odd
See (2.31) m(l) = l + 1 See (2.31) m(l) = 2l + 1

Max-Lebesgue: rule maxlebesgue, max-lebesgue Max-Lebesgue odd rules: rule maxlebesgueodd, max-lebesgue-odd
See (2.32) m(l) = l + 1 See (2.32) m(l) = 2l + 1

Min-Lebesgue: rule minlebesgue, min-lebesgue Min-Lebesgue odd rules: rule minlebesgueodd, min-lebesgue-odd
See (2.33) m(l) = l + 1 See (2.33) m(l) = 2l + 1

Min-Delta: rule mindelta, min-delta Min-Delta odd rules: rule deltaodd, min-delta-odd
See (2.34) m(l) = l + 1 See (2.34) m(l) = 2l + 1

Table 3: Summary of the available greedy sequence rules with the names used by the C++, tasgird and
MATLAB interfaces.

13

3 Local Polynomial Grids

Local polynomial grids are constructed from equidistant points and use functions with support restricted to
a neighborhood of each point. The local support of the functions allow the employment of locally adaptive
strategies and thus local grids are suitable for approximating functions with sharp behavior, e.g., large fluc-
tuation of the gradient. Similar to the global grids, local grids are constructed from tensors of points and
functions in one dimension. In contrast to global grids, local grids use functions with local support and very
strict hierarchy. For in depth analysis of the properties of the local grids see [13, 16, 17, 22].

3.1 Hierarchical interpolation rule

Let {xj}∞j=0 ∈ [−1, 1] be a sequence of nodes (w.l.o.g., we assume that we are working on the canonical
domain [−1, 1]) and let {∆xj}∞j=0 indicate the “resolution” of our approximation at point xj , i.e., the support
of the associated function. In addition, we have the hierarchy defined by the parents and children sets

Pj = {i ∈ N : xi is a parent of xj},
Oj = {i ∈ N : xi is a child (offspring) of xj},

where Pj can have more than one element. For a particular example of such hierarchies, see Section 3.3.
We assume that Pj and Oj define a partial order of the points and let h : N → N map each point to a place
in the hierarchy also called level, i.e.,

h(j) =

{
0, Pj = ∅
h(i) + 1, for any i ∈ Pj

We define the ancestry set Aj

Aj = {i ∈ N : h(i) ≤ h(j) and (xi −∆xi, xi + ∆xi) ∩ (xj −∆xj , xj + ∆xj) 6= ∅}

In order to construct the basis functions, for each xj we consider the set of p nearest ancestors

F
(p)
j = argmin

F⊂Aj ,#F=p

∑
i∈F
|xi − xj |,

where #F indicates the number of elements of F . Note that F (p)
j is defined only for p ≤ #Aj .

The functions associated with a hierarchy can have various polynomial order p ≥ 0. For constant
functions

φ
(0)
j (x) =

{
1, x ∈ (xj −∆xj , xj + ∆xj)
0, x 6∈ (xj −∆xj , xj + ∆xj)

For linear functions

φ
(1)
j (x) =

{
1− |x−xj |∆xj

x ∈ (xj −∆xj , xj + ∆xj)

0, x 6∈ (xj −∆xj , xj + ∆xj)

and functions of arbitrary order p > 1

φ
(p)
j (x) =

{ ∏
i∈F (p)

j

x−xi
xj−xi , x ∈ (xj −∆xj , xj + ∆xj)

0, x 6∈ (xj −∆xj , xj + ∆xj)

14

Note that a function can have order p only if the corresponding F
(p)
j exists, i.e., h(j) is large enough.

TASMANIAN constructs local polynomial grids by automatically using the largest p available for each
φ

(p)
j (x), optionally the library can be restricted p to a maximum user defined value. In the rest of this

discussion, we would omit p.

We extend the one dimensional hierarchy to a d-dimensional context using multi-index notation9

xj =
d⊗

k=1

xjk , φj(x) =
∏

φjk , supp{φj(x)} =
d⊗

k=1

(xjk −∆xjk , xjk + ∆xjk),

where each
∏
φjk is evaluated at the corresponding k-th entry of x and supp{φj(x)} indicate the support

of φj(x). Parents and children are associated with different directions

P
(k)
j = {i ∈ Nd : i =

k
j10 and ik ∈ Pjk} O

(k)
j = {i ∈ Nd : i =

k
j and ik ∈ Ojk}

and the level of a multi-index is h(j) =
∑d

k=1 h(jk). The multidimensional ancestry set is

Aj =
{
i ∈ Nd : h(i) ≤ h(j) and supp{φi(x)}

⋂
supp{φj(x)} 6= ∅

}
For f : Γ→ R, a multi-dimensional interpolant of f(x) is defined by a set of points X so that

GX [f] =
∑
j∈X

sjφj(x),

where the surplus coefficients sj are chosen such that GX [f](xi) = f(xi) for all i ∈ X , specifically, by
definition of φj(x)

sj = f(xj)−
∑
i∈Aj

siφi(xj).

In the case when f(x) is a vector valued function, a separate set of surplus coefficients is computed for each
output. When TASMANIAN first creates a local polynomial grid, the set of points is chosen so that

X = {j ∈ Nd : h(j) ≤ L}, (3.1)

for some use specified L.

3.2 Adaptive refinement

Locally adaptive grids are best utilized with an appropriate refinement strategy. Suppose we have con-
structed GX [f] for some X and consider an updated X̂ so that new points are added only in the region of
Γ where GX [f] sharply deviates from f(x). The surpluses sj are a good local error indicator, and thus we
define X̂ that contains only indexes that are parents or children of indexes j associated with large sj .

First, we define the set of large surpluses

B =

{
j ∈ X :

|sj |
fmax

> ε

}
,

9Similar to the global grids, N indicates the set of non-negative integers, and W,F,A, P,O,B,X ⊂ Nd denote sets of multi-
indexes.

10Here by i =
k
j we mean that i and j have the same components in all but the k-th direction

15

where ε > 0 is desired tolerance and fmax = maxi∈X |f(xi)|. When f(x) is a vector valued function,
an index j is included in B if any of the outputs has normalized surpluses larger than ε. TASMANIAN
implements 4 different refinement strategies, where X̂ is selected by including parents and/or children of
j ∈ B in different directions. This is done based on consideration of “orphan” directions and directional
surpluses.

For each index in j, we define the “orphan” directions

Tj =
{
k ∈ {1, 2, . . . , d} : P

(k)
j 6⊂ X

}
,

thus, Tj contains the directions where we have missing parents. We also consider directional surpluses, let

W
(k)
j =

{
i ∈ X : i =

k
j

}
, G

W
(k)
j

[f] =
∑
i∈W (k)

j

c
(k)
i φi(x),

where we have a set of the one directional surpluses c(k)
i associated with each index j, however, we focus

our attention only to c(k)
j . The set of large one directional surpluses is

Cj =

k ∈ {1, 2, . . . , d} :

∣∣∣c(k)
j

∣∣∣
fmax

> ε

 .

The classical refinement strategy constructs X̂ by adding the children of j ∈ B, i.e.,

X̂ = X
⋃⋃

j∈B

⋃
k∈{1,2,...,d}

O
(k)
j

 . (3.2)

However, the classical strategy can lead to instability around orphan points, hence, the parents-first approach
adds parents before the children

X̂ = X
⋃⋃

j∈B

 ⋃
k∈Tj

P
(k)
j

⋃ ⋃
k 6∈Tj

O
(k)
j

 . (3.3)

Large surplus signifies large local error, however, refinement doesn’t have to be done in all directions, thus,
the directional refinement uses k ∈ Cj , i.e.,

X̂ = X
⋃⋃

j∈B

⋃
k∈Cj

O
(k)
j

 . (3.4)

Combining the parents-first and directional approach leads to the family-direction-selective (FDS) method

X̂ = X
⋃⋃

j∈B

 ⋃
k∈Cj∩Tj

P
(k)
j

⋃ ⋃
k∈Cj\Tj

O
(k)
j

 . (3.5)

For more details about the four refinement strategies see [22].

16

3.3 One dimensional rules

TASMANIAN implements three specific one dimensional hierarchical rules: standard rule with ∆xj de-
creasing by 2 at each level, a semi-local rule where global basis is used for levels 0 and 1, and a modified
rule that assumes f(x) = 0 at ∂Γ.

The standard local rule is given by

x0 = 0, x1 = −1, x2 = 1, for j > 2 xj = (2j − 1)× 2−blog2(j−1)c − 3, (3.6)

where bxc = max{z ∈ Z : z ≤ x} is the floor function. The parent sets are

P0 = ∅, P1 = {0}, P2 = {0}, P3 = {1}, for j > 3 Pj =

{⌊
j + 1

2

⌋}
,

and the offspring sets are

O0 = {1, 2}, O1 = {3}, O2 = {4}, for j > 2 Oj = {2j − 1, 2j} .

The level function is

h(j) =


0, j = 0,
1, j = 1,
blog2(j − 1)c+ 1, j > 1,

and the resolution ∆xj is given by ∆x0 = 1 and for j > 0 we have ∆xj = 2−h(j)+1. Figure 1 shows the
first four levels of the linear, quadratic, and cubic functions.

A modification to the standard rule uses the same points, however, functions at level l = 1 with degree
higher than linear will have global support, i.e., if p > 1 then ∆x1 = ∆x2 = 2. In addition, for the purpose
of parents refinement (3.3) and (3.5) we use P3 = P4 = {1, 2}. The modified rule sacrifices resolution and
gains higher polynomial order, thus, the semi-local approach is better suited for functions with “smoother”
behavior. Figure 2 shows the linear, quadratic, and cubic semi-local functions. Note: there is no difference
between the linear versions of the local and semi-local rules.

An alternative local rule does not put points on the boundary and implicitly assumes that f(x) = 0 at
∂Γ. The hierarchy is defined as

x0 = 0, for j > 0 xj = (2j + 3)× 2−blog2(j+1)c − 3, (3.7)

The parent sets are

P0 = ∅, for j > 0 Pj =

{⌊
j − 1

2

⌋}
,

and the offspring sets are Oj = {2j + 1, 2j + 2}. The level function is h(j) = blog2(j + 1)c and the
resolution ∆xj is given by ∆x0 = 2−h(j). Figure 3 shows the first three levels of the linear, quadratic, and
cubic functions.

17

−1 0 1

0

1

X
0

−1 0 1

0

1

X
0

−1 0 1

0

1

X
0

−1 0 1

0

1

X
1

X
2

−1 0 1

0

1

X
1

X
2

−1 0 1

0

1

X
1

X
2

−1 0 1

0

1

X
3

X
4

−1 0 1

0

1

X
3

X
4

−1 0 1

0

1

X
3

X
4

−1 0 1

0

1

X
5

X
6

X
7

X
8

−1 0 1

0

1

X
5

X
6

X
7

X
8

−1 0 1

0

1

X
5

X
6

X
7

X
8

Figure 1: Local polynomial points (rule localp) and functions, left to right: linear, quadratic, and cubic
functions.

18

−1 0 1

0

1

X
0

−1 0 1

0

1

X
0

−1 0 1

0

1

X
0

−1 0 1

0

1

X
1

X
2

−1 0 1

0

1

X
1

X
2

−1 0 1

0

1

X
1

X
2

−1 0 1

0

1

X
3

X
4

−1 0 1

0

1

X
3

X
4

−1 0 1

0

1

X
3

X
4

−1 0 1

0

1

X
5

X
6

X
7

X
8

−1 0 1

0

1

X
5

X
6

X
7

X
8

−1 0 1

0

1

X
5

X
6

X
7

X
8

Figure 2: Semi-local polynomial points (rule semilocalp) and functions, left to right: linear, quadratic, and
cubic functions.

19

−1 0 1

0

1

X
0

−1 0 1

0

1

X
0

−1 0 1

0

1

X
0

−1 0 1

0

1

X
1

X
2

−1 0 1

0

1

X
1

X
2

−1 0 1

0

1

X
1

X
2

−1 0 1

0

1

X
3

X
4

X
5

X
6

−1 0 1

0

1

X
3

X
4

X
5

X
6

−1 0 1

0

1

X
3

X
4

X
5

X
6

Figure 3: Semi-local polynomial points (rule localp0) and functions, left to right: linear, quadratic, and
cubic functions.

20

3.4 Wavelets

TASMANIAN, in addition to the local polynomial rules, also implements wavelet rules with order 1 and
3. The hierarchy followed by the wavelets as well as the refinement strategies are very similar to the local
grids. The differences are as follows:

• The zeroth levels of wavelet rules of order 1 and 3, have 3 and 5 points respectively. This is a sharp
contrast to the single point of of the polynomial rules, since level 0 wavelet grid has 3d (or 5d) points
in d-dimensions (as opposed to a single point). See Figure 4.

• Wavelet rules have larger Lebesgue constant, which is due to the large magnitude of the boundary
wavelet functions. This can lead to instability of the wavelet interpolant around the boundary of the
domain.

• The linear system of equations associated with the wavelet surpluses is not triangular, hence a sparse
matrix has to be inverted every time values are loaded into the interpolant. This leads to a signifi-
cantly higher computational cost in manipulating the wavelet grids, especially in loading values and
performing direction selective refinement.

• Wavelets form a Riesz basis, which over-simplistically means that the wavelet surpluses are much
sharper indicators of the local error and hence wavelet based refinement strategy “could” generate a
grid that is more accurate and has fewer points. The quotations around the word “could” relate to the
point about the Lebesgue constant.

• For more details about wavelets, see [13, 15, 24].

21

−1 0 1

0

1

X
0

X
1

X
2

−1 0 1

0

1

X
0

X
1

X
2

X
3

X
4

−1 0 1

0

1

X
3

X
4

−1 0 1

0

1

X
5

X
6

X
7

X
8

−1 0 1

0

1

X
5

X
6

X
7

X
8

−1 0 1

0

1

X
9

X
10

X
11

X
12

X
13

X
14

X
15

X
16

Figure 4: The first three levels for wavelets of order 1 (left) and 3 (right). The functions associated with
x13, x14, x15, and x16 are purposely omitted to reduce the clutter on the plot, since the funcitons are mirror
images of the those associated with x12, x11, x10, and x9 respectively.

22

4 Compilation

4.1 Unix Based Systems (Linux/MacOSX)

Quick Build

In a shell inside the folder with the source files, type

make

The code doesn’t require any external libraries and uses the simple GNU-Make engine. Hence, it will
most likely compile just fine.

To verify the build you should run

./tasgrid -test

and make sure all the test pass. See Section 6 for more details.

Advanced Build Options

Open the Makefile in an editor and adjust the options.

CC specifies the compiler command. The code was written for the GNU C++ compiler (GCC). The
default command is g++, however, that can be changed to force a specific version of the compiler or
even a different compiler.

OpenMP is used throughout the code for multicore parallelism. It can be optionally enabled by specifying the
COMPILE OPTIONS = -fopenmp or alternatively disabled by removing the options.

OPTC specifies standard GCC compiler options, refer to the GCC manual for details.

Note: since version 3.1 the Makefile contains example directives for Clang and Intel ICC compilers.

Known Problems

OpenMP is not fully supported by all compilers on Mac OSX and OpenMP doesn’t scale well in perfor-
mance. By default, OpenMP is disabled on non-Linux platforms, this can be changed by editing COM-
PILE OPTIONS in the Makefile.

23

4.2 Windows using Mircosoft Visual C++ 2015

Starting with version 3.1, TASMANIAN can be compiled using MS Visual C++. The tasgrid executable
can be compiled from the development console using the commands:

cl -c *.cpp /Ox /EHsc /openmp
cl *.obj /Fe:tasgrid.exe

The executable and a static library can also be compiled using the included WindowsMake.bat script. See
WindowsREADME.txt for more details.

24

5 LIBTASMANIANSPARSEGRIDS (libtsg)

All of the sparse grids functionality is included in the libtsg C++ library. Code that interfaces with the library
should include the TasmanianSparseGrid.hpp, which introduces the TasGrid namespace and the definition
of the TasmanianSparseGrid class.

WARNING: The code performs little sanity check on the validity of input. Wrong input would result
in incorrect output and most likely a crash.

5.1 Constructor TasmanianSparseGrid()

TasmanianSparseGrid();

This is the only class constructor (called by default), makes an empty grid. Before any operations can be
performed, a grid has to be made with one of the makeGlobalGrid(), makeSequenceGrid(), makeLocalPoly-
nomialGrid() or makeWaveletGrid() functions or alternatively the grid can be read from a stream/file using
the read() functions (in order to read a grid, it must first be written to the file with the write() function). The
getVersion() and getLicense() functions can be called at any time. Calling any other function will result in a
Segfault.

5.2 Destructor TasmanianSparseGrid()

˜TasmanianSparseGrid();

This is the destructor that releases any memory used by the class.

5.3 function getVersion()

const char* getVersion() const;

Returns the version of the library, which is a simple hard-coded string.

5.4 function getLicense()

const char* getLicense() const;

Returns a short string indicating the license of the library. This is a simple hard-coded string.

25

5.5 function makeGlobalGrid()

void makeGlobalGrid(int dimensions,
int outputs,
int depth,
TypeDepth type,
TypeOneDRule rule,
const int *anisotropic_weights = 0,
double alpha = 0,
double beta = 0,
const char *custom_rule_filename = 0);

This function creates a sparse grid induced by one of the global quadrature and interpolation rules. See
Section 2 for a full list of the rules. The parameters are described as follows:

dimensions is a positive integer specifying the dimension of the grid. There is no hard restriction on how big
the dimension can be, however, for large dimensions, the number of points of the sparse grid grows
fast (this is called the curse of dimensionality) and hence the grid may require prohibitive amount of
memory.

outputs is a non-negative integer specifying the number of outputs for the function that would be interpolated.
If outputs is zero, then the grid can only generate quadrature and interpolation weights, i.e., problems
(1.3) and (1.2). There is no hard restriction on how many outputs can be handled, however, note that
the code requires at least outputs× number of points in storage and hence for large number of outputs
memory management may have adverse effect on performance.

depth is a non-negative (or strictly positive) integer that controls the density of abscissa points. This is
the L parameter in tensor selection (2.15) - (2.23). There is no hard restriction on how big depth
can be, however, it has direct effect on the number of points and hence performance and memory
requirements.

type is an enumerated type indicating the tensor selection strategy.

– type level: see (2.15)
– type curved: see (2.16)
– type hyperbolic: see (2.17)
– type iptotal: see (2.18)
– type ipcurved: see (2.19)

– type iphyperbolic: see (2.20)

– type qptotal: see (2.21)

– type qpcurved: see (2.22)

– type qphyperbolic: see (2.23)

– type tensor: creates a full (not sparse) tensor grid in the notation of §2, G =
⊗d

k=1 Um(L·ξk).

– type iptensor: creates the smallest full tensor grid that will interpolate exactly all polynomials
in span{xν : ν ≤ L · ξ}

– type iptensor: creates the smallest full tensor grid that will integrate exactly all polynomials in
span{xν : ν ≤ L · ξ}

26

rule is an enumerated type from any of the global rules in Tables 1, 2 and 3. Those are:

rule chebyshev

rule chebyshevodd

rule clenshawcurtis

rule clenshawcurtis0

rule fejer2

rule rleja

rule rlejadouble2

rule rlejadouble4

rule rlejaodd

rule rlejashifted

rule rlejashiftedeven

rule leja

rule lejaodd

rule maxlebesgue

rule maxlebesgueodd

rule minlebesgue

rule minlebesgueodd

rule mindelta

rule mindeltaodd

rule gausslegendre

rule gausslegendreodd

rule gausspatterson

rule gausschebyshev1

rule gausschebyshev1odd

rule gausschebyshev2

rule gausschebyshev2odd

rule gaussgegenbauer

rule gaussgegenbauerodd

rule gaussjacobi

rule gaussjacobiodd

rule gausslaguerre

rule gausslaguerreodd

rule gausshermite

rule gausshermiteodd

rule customtabulated

Note: the custom tabulated rule requires custom rule file, see below as well as Appendix A.

anisotropic (anisotropic weights) is either NULL or an array of integers of size dimensions or 2× dimensions
specifying the ξ and η anisotropic weights. If the pointer is NULL, then TASMANIAN assumes
ξ = 1 and η = 0, otherwise, the entries 0 to dimension−1 of the vector specify the components in
ξ and the following dimension to 2× dimension entries specifies η (if type is not set to one of the
“*curved” ones, then the second set of entries is not used). Note that in the literature, the weights
are assumed to be real numbers, however, TASMANIAN assumes that the weights are normalized
rational numbers, i.e., the library uses ξ = ξ/maxk ξk and η = η/maxk ξk (no typo here maxk ξk is
used in both cases).

alpha specifies the α parameter of ρ(x), this is used only if rule requires the α parameter. See Table 2.

beta specifies the β parameter of ρ(x), this is used only if rule requires the β parameter. See Table 2.

custom rule file is either NULL or the path to a file describing a custom rule. Custom rules are described via tables
provided in a text file format. See Appendix A for more information about the file format of the
custom file.

27

5.6 function makeSequenceGrid()

void makeGlobalGrid(int dimensions,
int outputs,
int depth,
TypeDepth type,
TypeOneDRule rule,
const int *anisotropic_weights = 0);

Creates a global grid using the representation described in section 2.3. The rule is restricted to one of
the nested rules with growth m(l) = l + 1, namely:

rule rleja

rule rlejashifted

rule leja

rule maxlebesgue

rule minlebesgue

rule mindelta

5.7 function makeLocalPolynomialGrid()

void makeLocalPolynomialGrid(int dimensions,
int outputs,
int depth,
int order,
TypeOneDRule rule = rule_localp);

Creates a grid based on one of the local hierarchical piece-wise polynomial rules described in section 3.
Local grids can be used for integration, however, in many cases, this would result in points associated with
zero weights.

dimensions same as makeGlobalGrid()

outputs same as makeGlobalGrid(), however, due to the non-trivial form of the surplus coefficients sj , large
number of outputs comes with bigger computational cost in addition to the larger storage cost of more
than 2 × outputs × number of points.

depth is a positive integer that specifies the initial number of levels for the grid, namely the L in (3.1).

order is an integer no smaller than −1, which specifies the largest order of polynomial to be used (i.e., the
p parameter). If order is set to −1, the largest possible order would be selected automatically “on the
fly”.

rule is specifies one of the three local polynomial rules rule localp, rule semilocalp, rule localp0.

28

5.8 function makeWaveletGrid()

void makeWaveletGrid(int dimensions,
int outputs,
int depth,
int order = 1);

Creates a grid based on local hierarchical wavelet basis, see 3.4.

dimensions same as in makeGlobalGrid() and makeLocalPolynomialGrid()

outputs same as in makeLocalPolynomialGrid()

depth same as in makeLocalPolynomialGrid()

order an integer equal to either 1 or 3.

5.9 function makeFullTensorGrid()

Since TASMANIAN version 3.0, this function is removed. In order to create a full tensor grid, use function
makeGlobalGrid() with type set to tensor.

5.10 functions recycle***Grid()

Those functions were removed in TASMANIAN version 3.0, see the update***Grid() functions, but note
that those are not the same as the old functions.

5.11 functions update***Grid()

void updateGlobalGrid(int depth,
TypeDepth type,
const int *anisotropic_weights = 0);

The inputs a the same as in makeGlobalGrid(), thus function should only be called for a grid with a
nested rules (i.e., among the non-Gauss rules only rule chebyshev is non-nested, among the Gauss rules
only rule gausspatterson is nested). If the grid has no outputs or no values have been loaded, then this
function is equivalent to calling makeGlobalGrid() with the new depth, type and anisotropic weights but
using the old dimensions, outputs and rule. If values have been loaded, then a new tensor index set Θnew

is created according to the formula specified by type and the new index set is added to the old index set.
This corresponds to refinement with user specified depth and anisotropic weights.

29

5.12 functions update***Grid()

void updateSequenceGrid(int depth,
TypeDepth type,
const int *anisotropic_weights = 0);

Same as updateGlobalGrid(), but called for a sequence grid.

5.13 function write()

void write(std::ofstream &ofs) const;

Writes out the grid in text format to the ofstream.

5.14 function read()

bool read(std::ifstream &ifs);

Reads a grid that has already been written to the stream. The function returns True if the reading was
successful or False if errors with the file format were encountered. The function will write error information
to std::cerr stream.

5.15 function write()

void write(const char* filename) const;

Opens a file with filename and calls void write(std::ofstream &ofs) const; with the associated stream.
In the end, the file is closed.

5.16 function read()

bool read(const char* filename);

Opens a file with filename and calls bool read(std::ifstream &ifs) const; with the associated stream. In
the end, the file is closed.

30

5.17 function setTransformAB()

void setTransformAB(const double *a,
const double *b);

Since TASMANIAN version 3.0, this function is renamed to setDomainTransform().

5.18 function setDomainTransform()

void setDomainTransform(const double a[],
const double b[]);

By default integration and interpolation are performed on a canonical interval [−1, 1] (with the exception
of a few Gauss rules descried in Table 2). Optionally, the library can transform the canonical interval into
a custom one defined by the a and b parameters for every direction. The transformation is applied as a
post-processing step to the abscissas and weights.

a is an array of real numbers of size getNumDimensions() that defines the ak parameter associated with
every direction.

b is an array of real numbers of size getNumDimensions() that defines the bk parameter associated with
every direction.

5.19 function isSetDomainTransform()

bool isSetDomainTransform() const;

Returns True if setDomainTransform() has been called since the last make***Grid(), False if the grid is
set to the default canonical domain.

5.20 function clearTransformAB()

void clearTransformAB();

Since TASMANIAN version 3.0, this function is renamed to clearDomainTransform().

5.21 function clearTransformAB()

void clearDomainTransform();

Removed the transform set with setDomainTransform() and the points are no longer transformed during
calls to get***Points() functions.

31

5.22 function getTransformAB()

void getTransformAB(double* &a,
double* &b) const;

Since TASMANIAN version 3.0, this function is replaced by getDomainTransform(), however, note that
in the new function a and b cannnot be NULL, they have to be pre-allocated.

5.23 function getDomainTransform()

void getTransformAB(double a[],
double b[]) const;

Returns the transform parameters.

a the first getNumDimensions() entries of a are overwritten with the ak parameters of the transform.

b the first getNumDimensions() entries of b are overwritten with the bk parameters of the transform.

5.24 function getNumDimensions()

int getNumDimensions() const;

Returns the value of the dimension parameter used by the make***Glid() function call.

5.25 function getNumOutputs()

int getNumOutputs() const;

Returns the value of the outputs parameter used by the make***Glid() function call.

5.26 function getOneDRule()

TypeOneDRule getOneDRule() const;

Returns the value of the rule parameter in the make***Glid() function call, for a wavelet grids this
returns rule wavelet.

32

5.27 function getOneDRuleDescription()

const char *getOneDRuleDescription() const;

Since TASMANIAN version 3.0, this function is removed. If this functionality if desired, then use

const char* s = TasGrid::OneDimensionalMeta::getHumanString(grid->getRule());

where grid is the active instance of the TasmanianSparseGrid class.

5.28 function getCustomRuleDescription()

const char *getCustomRuleDescription() const;

Returns the custom rule description string, see Appendix A. If rule was not set to rule customtabulated,
then this function will return NULL.

5.29 function getAlpha()/getBeta()

double getAlpha() const;
double getBeta() const;

Returns the alpha and beta parameters used in the call to makeGlobalGrid(). For all other grids, these
functions return 0.

5.30 function getOrder()

int getOrder() const;

Returns the order parameter used in the call to makeLocalPolynomialGrid() or makeWaveletGrid(), for
global and sequence grids this function returns −1.

33

5.31 function getNum***()

int getNumLoaded() const;
int getNumNeeded() const;
int getNumPoints() const;

Returns the number of points. The loaded points are ones that have already been associated with values
via the loadNeededPoints() function. Right after the call to make***Gird() the needed points are all the
points in the grid, otherwise the needed points are those generated by the refinement procedures. If no points
have been loaded, then getNumPoints() returns the same as getNumNeeded(), otherwise, getNumPoints()
returns the same as getNumLoaded().

Note: if a grid is created with zero outputs, then getNumNeeded() always returns 0 and getNumPoints()
returns the same as getNumLoaded(), i.e., no points are needed and all points are considered loaded.

Note: as compared to the interface of TASMANIAN version 2.0, getNumPoints() is the same, and
getNumNeeded() is just a renamed version of getNumNeededPoints().

5.32 function get***Points()

double* getLoadedPoints() const;
double* getNeededPoints() const;
double* getPoints() const;

Returns an array of length getNumDimensions()× getNum***() of values that represent the points of the
grid. The number of points corresponds to the above getNum***() functions. The first point is located in the
first getNumDimensions() number of entries, the second point is located in the second getNumDimensions()
number of entries, and so on.

Note: as compared to the interface in version 2.0, getPoints() and getNeededPoints() are the same, albeit
with different syntax.

5.33 function getWeights()

void getWeights(double* &weights) const;

Since version 3.0, this function has been renamed to getQuadratureWeights().

34

5.34 function getQuadratureWeights()

double* getQuadratureWeights() const;

Returns an array of size getNumPoints() of the quadrature weights associated with the points. The first
weight is associated with the first point returned by getPoints(), the second weight is associated with the
second point and so on.

5.35 function getInterpolantWeights()

void getInterpolantWeights(const double x[],
double* &weights) const;

Since version 3.0, this function has been renamed to getInterpolationWeights().

5.36 function getInterpolationWeights()

double* getInterpolationWeights(const double x[]) const;

Returns the interpolantion weights associated with the point x, as in equation (1.2). For global grids with
nested rules this function returns the multivariate Legendre polynomials evaluated at point x. For global
grids with non-nested rules, this returns a linear combination of tensors of Legendre polynomials (note that
non-nested grids do not generate interpolants). For all other grids, computing the getInterpolationWeights()
is very expensive and should be avoided (if possible).

x is an array of dimension getNumDimensions() representing the point of interest to evaluate the inter-
polant.

returns an array of size getNumPoints() of the interpolation weights associated with the grid points. The first
weight is associated with the first points returned by getPoints(), the second weight is associated with
the second point and so on.

35

5.37 function getNumNeededPoints()

int getNumNeededPoints() const;

Since version 3.0, this has been renamed to getNumNeeded().

5.38 function loadNeededPoints()

void loadNeededPoints(const double vals[]);

Provides the values of the function to be interpolated evaluated at the corresponding abscissas.

vals is an array of size getNumOutputs()× getNumNeeded(). The first getNumOutputs() entries correspond
to the outputs of the interpolated function at the first grid point. The second set of getNumOutputs()
entries correspond to the second point and so on.

5.39 function evaluate()

void evaluate(const double x[], double y[]) const;

Finds the value of the interpolant (or point-wise approximation) at the provided point x as defined by
equation (1.1). The result is written into y.

x an array of size getNumDimensions() that indicate the point where the interpolant should be evaluated.

y an already allocated array of size getNumOutputs(). On exit, the entries of y are overwritten with the
values of the interpolant at the point x.

5.40 function integrate()

void integrate(double y[]) const;

Integrates the interpolant over the domain and returns the result in y.

y an already allocated array of size getNumOutputs(). On exit, the entries of y are overwritten with the
values of the integral of the interpolant over the domain.

36

5.41 function is***()

bool isGlobal() const;
bool isSequence() const;
bool isLocalPolynomial() const;
bool isWavelet() const;

The function corresponding to the last call to make***Grid() returns true, all other functions return
false. If make***Grid() has not been called, then all functions return false.

5.42 function setRefinement()

void setRefinement(double tolerance, TypeRefinement criteria);

Since version 3.0, this function is replaced by setSurplusRefinement(), see below.

5.43 function setAnisotropicRefinement()

void setAnisotropicRefinement(TypeDepth type,
int min_growth,
int output);

Implements the anisotropic refinement strategy described briefly in section 2.4 and in more details in
[23]. This function can only be called for Global and Sequence grids. Note that refinement cannot be used
if the grid has no outputs or before values have been loaded, i.e., loadNeededPoints() has been called.

type specifies the type of refinement to use, this can be any type described in makeGlobalGrid(), with the
exception of the tensor and hyperbolic types.

min growth forces the new “refined” grid to have a minimum number of new (needed) points.

output specifies the output to use in the refinement strategy and only computes orthogonal expansion or
surpluses for that specific output. Sequence grids store all surpluses anyway, hence all outputs can be
easily used together in the refinement strategy, to achieve that set output to −1.

5.44 function setSurplusRefinement() - global version

void setSurplusRefinement(double tolerance, int output);

Implements the surplus refinement strategy described in equation (2.26) in section 2.4. This function
can only be called for Sequence grids and Global grids with sequence rules. Note that refinement cannot be
used if the grid has no outputs or before values have been loaded, i.e., loadNeededPoints() has been called.

37

tolerance specifies the cutoff threshold, no refinement will be performed for surpluses with relative magnitude
smaller than tolerance.

output specifies the output to use in the refinement strategy and only computes surpluses for that specific
output. Sequence grids store all surpluses anyway, hence all outputs can be easily used together in the
refinement strategy, to achieve that set output to −1.

5.45 function setSurplusRefinement() - local version

void setSurplusRefinement(double tolerance,
TypeRefinement criteria,
int output);

Implements the surplus refinement strategy described briefly in section 3.2 and in more details in [22].
This function can only be called for Local polynomial and Wavelet grids. Note that refinement cannot be
used if the grid has no outputs or before values have been loaded, i.e., loadNeededPoints() has been called.

tolerance specifies the cutoff threshold, i.e., the ε parameter in equations (3.2), (3.3), (3.4), (3.5).

criteria specifies the refinement strategy

refine classic, see (3.2)

refine parents first, see (3.3)

refine direction selective, see (3.4)

refine fds, see (3.5)

output specifies the output to use in the refinement strategy and only consider surpluses for that specific
output. Optionally, output can be set to −1 in which case all surpluses will be considered, i.e., for
each point the code will consider the output with largest relative surplus. Note, that −1 corresponds
to the default behavior of Tasmanian 3.0.

5.46 function clearRefinement()

void clearRefinement();

Every set***Refinement() function expands the grid to include a new set of points (unless all surpluses
are smaller than tolerance). The clearRefinement() function removes the needed points and all internal data
structures associated with the last call to set***Refinement(). Note that once loadNeededPoints() is called
for the new set of points, then the refinement cannot be undone. The purpose of this function is to reduce
the memory footprint of the grid in case the user decides not to load the new points from the last refinement.

5.47 function getPolynomialIndexes()

Since TASMANIAN version 3.0, this function is renamed to getPolynomialSpace().

38

5.48 function getPolynomialSpace()

int* getPolynomialSpace(bool interpolation, int &n) const;

Computes the polynomial associated with the grid, see Λm and Λq in equations (2.11) and (2.12). Re-
turns a list of integers that stores the multi-indexes.

interpolation specifies whether to consider the polynomial space associated with interpolation or integration, i.e.,
(2.11) and (2.12).

n returns the number of multi-indexes in the list.

returns an array of integers of length getNumDimensions() × n, where the first getNumDimensions() entries
give the first multi-index, the second multi-index is in the second getNumDimensions() entries, etc.

5.49 function printStats()

void printStats() const;

Prints short description of the sparse grid. The output is written to standard output (i.e., cout).

5.50 functions getSurpluses() and getPointIndexes()

const double* getSurpluses() const;
const int* getPointIndexes() const;

Those functions exist primarily for debugging and testing purposes. The functions expose internal data
structures, modifying the content of the pointers will result in undefined bahavior. Function getSurpluses()
returns a pointer to the sj coefficients for sequence, local polynomial, and wavelet grids. Function get-
PointIndexes() returns an array with multi-indexes, for local polynomial and wavelet grids the function
returns X , for global and sequence grids returns X(θ). Note that in all cases indexing on the points starts
form zero.

5.51 Examples

The file example.cpp in the Examples/ folder has sample code that demonstrates proper use of the Tasmani-
anSparseGrid class. In addition, there is also a Makefile that compiles the example.

39

6 TASGRID

The tasgrid executable is a command line interface to libtsg. It provides the ability to create and manipulate
sparse grids, save and load them into files and optionally interface with another program via text files. For
the most part, tasgrid reads a grid from a file, calls one or more of the functions described in the previous
section and then saves the resulting grid. In addition, tasgrid provides a set of basic functionality tests.

6.1 Basic Usage

./tasgrid <command> <option1> <value1> <option2> <value2>

The first input to the executable is the command that specifies the action that needs to be taken. The
command is followed by options and values.

Every command is associated with a number of options. If other options are provided, then they are
ignored.

Tasgrid has some basic error checking and if it encounters an error in the input, tasgrid will print a short
message specifying the error and then exit.

6.2 Command: -h, help, -help, –help

Prints information about the usage of tasgrid. Note that many commands and options have a long and short
name and the help command will list both.

In addition, writing help after any command will print information specific to that command. Thus, help
is a universal option.

6.3 Command: -listtypes

List the available one dimensional quadrature and interpolation rules as well as the different types of global
grids. Use this command to see the correct spelling of all string options.

6.4 Command: -version or -info

Prints the version of the library.

40

6.5 Command: -test

./tasgrid -test

Performs a series of basic functionality tests. For different grids, different parameters and all possible
quadrature rules, tasgrid will perform a test to make sure that it can integrate or interpolate appropriate
functions to a high degree of precision. The output of the command should be a list of the tests and the Pass
or Fail result. A failure of a test in an indication that something went wrong in the build process or there is
a bug in the code.

Note that the test of the custom rule requires that GaussPattersonRule.table file be present in the execu-
tion folder.

On a Intel 3.2Ghz 6-core Sandy Bridge-E CPU all tests take about 5 seconds (with OpenMP enabled),
if the test take much longer on your machine this is an indication of either a slow CPU or problem with the
build or code.

6.6 Command: -makegrid

./tasgrid -makegrid <option1> <value1> <option2> <value2>

This is a deprecated command, will be removed in future releases. Right now, makegrid calls makeglobal
for global rules, makelocalpoly for local polynomial rules, and makewavelet for wavelet rules.

6.7 Command: -makeglobal

Calls makeGlobalGrid() with the specified set of options. Accepted options are:

-dimensions the dimensions parameter

-outputs the outputs parameter

-depth the depth parameter

-onedim is a string specifying the rule parameter of makeGlobalGrid(). See ./tasgrid -listtypes for the list of
accepted strings, it’s pretty self-explanatory.

-type is a string specifying the type parameter of makeGlobalGrid(). See ./tasgrid -listtypes for the list of
accepted strings, it’s pretty self-explanatory.

-alpha the alpha parameter

-beta the beta parameter

-outputfile is an optional matrix file. At the end of the program, tasgird will write in the file the points associated
with the grid. The matrix file will have getNumPoints() number of rows and -dimensions number of
columns. The first points will be on the first row, the second on the second row and so on.

41

-gridfile is an optional file. The grid can be saved in this file for future use.

-anisotropyfile is an optional matrix file, however, unlike regular matrix files the entries !must be integers!, oth-
erwise the behavior of the code becomes unpredictable. The matrix file must have one column and
either -dimensions number of rows for non-“curved” rules or double -dimensions number of rows
for “curved”. Basically, this specifies the anisotropic weights input to makeGlobalGrid().

-customrulefile must be specified when -onedim custom-tabulated is used. The given filename must provide the
description of a custom rule. See Appendix A for details on the custom file format.

-transformfile is an optional matrix file that specifies the transformation from the canonical domain to a custom
domain. The matrix file should have dimensions number of rows and 2 columns. The first column
is the ak parameter and the second column is the bk parameter and each row corresponds to one
dimension. For detail on the matrix file format see subsection 6.29. Note: this option used to be
called -inputfile.

-print write out the same data as in the -outputfile but to the cout stream.

6.8 Command: -makesequence

Calls makeSequenceGrid() with the specified set of options. Accepted options are:

-dimensions the dimensions parameter

-outputs the outputs parameter

-depth the depth parameter

-onedim is a string specifying the rule parameter of makeSequenceGrid(). See ./tasgrid -listtypes for the list of
accepted strings, it’s pretty self-explanatory.

-type is a string specifying the type parameter of makeSequenceGrid(). See ./tasgrid -listtypes for the list
of accepted strings, it’s pretty self-explanatory.

-outputfile is an optional matrix file. At the end of the program, tasgird will write in the file the points associated
with the grid. The matrix file will have getNumPoints() number of rows and -dimensions number of
columns. The first points will be on the first row, the second on the second row and so on.

-gridfile is an optional file. The grid can be saved in this file for future use.

-anisotropyfile same as in -makeglobal

-transformfile same as in -makeglobal

-print write out the same data as in the -outputfile but to the cout stream.

42

6.9 Command: -makelocalpoly

Calls makeLocalPolynomialGrid() with the specified set of options. Accepted options are:

-dimensions the dimensions parameter

-outputs the outputs parameter

-depth the depth parameter

-order the order parameter

-onedim is a string specifying the rule parameter of makeLocalPolynomialGrid(). See ./tasgrid -listtypes for
the list of accepted strings, it’s pretty self-explanatory.

-outputfile is an optional matrix file. At the end of the program, tasgird will write in the file the points associated
with the grid. The matrix file will have getNumPoints() number of rows and -dimensions number of
columns. The first points will be on the first row, the second on the second row and so on.

-gridfile is an optional file. The grid can be saved in this file for future use.

-transformfile same as in -makeglobal. Note: this option used to be called -inputfile.

-print write out the same data as in the -outputfile but to the cout stream.

6.10 Command: -makewavelet

Calls makeWaveletGrid() with the specified set of options. Accepted options are:

-dimensions the dimensions parameter

-outputs the outputs parameter

-depth the depth parameter

-order the order parameter

-outputfile is an optional matrix file. At the end of the program, tasgird will write in the file the points associated
with the grid. The matrix file will have getNumPoints() number of rows and -dimensions number of
columns. The first points will be on the first row, the second on the second row and so on.

-gridfile is an optional file. The grid can be saved in this file for future use.

-transformfile same as in -makeglobal. Note: this option used to be called -inputfile.

-print write out the same data as in the -outputfile but to the cout stream.

43

6.11 Command: -makequadrature

./tasgrid -makequadrature <option1> <value1> <option2> <value2>

Based on the value of -onedim, this calls to one of: -makeglobal, -makelocalpoly, and -makewavelet.
The accepted parameters are the same with these exceptions:

-outputs is NOT accepted, the outputs are set to 0

-gridfile is NOT accepted, if a gridfile is desired, call the corresponding -make*** command with -outputs 0.

-outputfile has different format. At the end of the program, tasgird will write in the file the quadrature weights
and points associated with the grid. The matrix file will have getNumPoints() number of rows and
-dimensions plus one number of columns. The first abscissa will be on the first row, the second on the
second row and so on. On each row, the first column is the weight and the rest of the columns are the
entries of the associated point.

-print has the same format as -outputfile, but using cout stream.

6.12 Command: -recycle

./tasgrid -recycle

Removed in version 3.0.

6.13 Command: -makeupdate

./tasgrid -makeupdate <option1> <value1> <option2> <value2> ...

Calls updateGlobalGird() or updateSequenceGrid().

-gridfile this is the file with an already created grid, must be either Global or Sequence.

-depth the depth parameter

-type is a string specifying the type parameter. See ./tasgrid -listtypes for the list of accepted strings, it’s
pretty self-explanatory.

-anisotropyfile is an optional matrix file, however, unlike regular matrix files the entries !must be integers!, oth-
erwise the behavior of the code becomes unpredictable. The matrix file must have one column and
either -dimensions number of rows for non-“curved” rules or double -dimensions number of rows
for “curved”. Basically, this specifies the anisotropic weights input to updateGlobalGird() and up-
dateSequenceGrid().

44

-outputfile is an optional matrix file. At the end of the program, tasgird will write in the file the new (needed)
points associated with the grid. The matrix file will have getNumPoints() number of rows and -
dimensions number of columns. The first points will be on the first row, the second on the second row
and so on.

-print write out the same data as in the outputfile but to the cout stream.

6.14 Command: -getquadrature

./tasgrid -getquadrature <option1> <value1> <option2> <value2> ...

Calls getQuadratureWeights().

-gridfile this is the file with an already created grid.

-outputfile has different format. At the end of the program, tasgird will write in the file the quadrature weights
and points associated with the grid. The matrix file will have getNumPoints() number of rows and
-dimensions plus one number of columns. The first abscissa will be on the first row, the second on the
second row and so on. On each row, the first column is the weight and the rest of the columns are the
entries of the associated point.

-print write out the same data as in the -outputfile but to the cout stream.

6.15 Command: -getpoints

./tasgrid -getpoints <option1> <value1> <option2> <value2>

Calls getPoints().

-gridfile this is the file with an already created grid.

-outputfile is an optional matrix file. The program will write in the file the points associated with the grid. The
matrix file will have getNumPoints() number of rows and getNumDimensions() number of columns.
The first points will be on the first row, the second on the second row and so on.

-print write out the same data as in the -outputfile but to the cout stream.

6.16 Command: -getinterweights

./tasgrid -getinterweights <option1> <value1> <option2> <value2>

Calls getInterpolationWeights() for every point specified by the -xfile. The result is written to an output
matrix file

45

-gridfile this is the file with an already created grid and loaded values.

-xfile is a matrix file with points of interest. The file can have arbitrary number of rows and getNumDimen-
sions() number of columns. Each row corresponds to one point of interest.

-outputfile is an optional matrix file that is written on exit. The file contains the interpolation weights associated
with the points provided by the -xfile. The file has the same number of rows and getNumPoints()
number of columns. Each row contains the interpolation weights associated with the corresponding
point of interest.

-print write out the same data as in the -outputfile but to the cout stream.

6.17 Command: -getneededpoints

./tasgrid -getneededpoints <option1> <value1> <option2> <value2>

Calls getNeeded().

-gridfile this is the file with an already created grid.

-outputfile is an optional matrix file. The program will write in the file the points associated with the grid that are
not yet associated with values of the interpolated function. The matrix file will have getNumPoints()
number of rows and getNumDimensions() number of columns. The first points will be on the first row,
the second on the second row and so on.

-print write out the same data as in the -outputfile but to the cout stream.

6.18 Command: -loadvalues

./tasgrid -loadvalues <option1> <value1> <option2> <value2>

Calls loadNeededPoints().

-gridfile this is the file with an already created grid. On exit, it will contain the grid with loaded values.

-valsfile is a matrix file with getNumNeededPoints() number of rows and getNumOutputs() number of columns.
The first row contains the values of the interpolated function associated with the first needed abscissa.
The second row corresponds to the second abscissa and so on.

46

6.19 Command: -evaluate

./tasgrid -evaluate <option1> <value1> <option2> <value2>

Calls evaluate().

-gridfile this is the file with an already created grid and loaded values.

-xfile is a matrix file with points of interest. The file can have arbitrary number of rows and getNumDimen-
sions() number of columns. Each row corresponds to one point of interest.

-outputfile is an optional matrix file that is written on exit. The file contains the values of the interpolant at the
points provided by the -xfile. The file has the same number of rows and getNumOutputs() number of
columns. Each row contains the values of the interpolant at the corresponding point of interest.

-print write out the same data as in the -outputfile but to the cout stream.

6.20 Command: -integrate

./tasgrid -integrate <option1> <value1> <option2> <value2>

Calls integrate()

-gridfile this is the file with an already created grid and loaded values.

-outputfile is an optional matrix file that is written on exit. The file contains the integrals of the interpolant over
the domain. The file has one row and getNumOutputs() number of columns.

-print write out the same data as in the -outputfile but to the cout stream.

6.21 Command: -getanisotropy

./tasgrid -getanisotropy <option1> <value1> <option2> <value2>

Calls estimateAnisotropicCoefficients()

-gridfile this is the file with an already created grid.

-type is a string specifying the type parameter of estimateAnisotropicCoefficients(). See ./tasgrid -listtypes
for the list of accepted strings, it’s pretty self-explanatory.

-refout specifies the output parameter of estimateAnisotropicCoefficients().

-outputfile is an optional matrix file. At the end of the program, tasgird will write in the file the values of the
estimated coefficients.

-print write out the same data as in the -outputfile but to the cout stream.

47

6.22 Command: -refine

./tasgrid -refine <option1> <value1> <option2> <value2>

Note: the behavior of this command has changed in version 3.0, when applied to Global grids this
command will use anisotropic as opposed to surplus refinement.

For Global and Sequence grids calls setAnisotropicRefinement()and for Local Polynomial and Wavelet
grids calls setSurplusRefinement(). See commands -refineaniso and -refinesurp.

6.23 Command: -refineaniso

./tasgrid -refineaniso <option1> <value1> <option2> <value2>

Calls setAnisotropicRefinement()

-gridfile this is the file with an already created grid and loaded values.

-type is a string specifying the type parameter of setAnisotropicRefinement(). See ./tasgrid -listtypes for the
list of accepted strings, it’s pretty self-explanatory.

-mingrowth specifies the min growth parameter of setAnisotropicRefinement().

-refout specifies the output parameter of setAnisotropicRefinement().

-outputfile is an optional matrix file. At the end of the program, tasgird will write in the file the needed points,
i.e., the ones that are not yet associated with values of the interpolated function. The matrix file will
have getNumPoints() number of rows and getNumDimensions() number of columns. The first points
will be on the first row, the second on the second row ...

-print write out the same data as in the -outputfile but to the cout stream.

6.24 Command: -refinesurp

./tasgrid -refinesurp <option1> <value1> <option2> <value2>

Calls setSurplusRefinement()

-gridfile this is the file with an already created grid and loaded values.

-tolerance specifies the tolerance parameter of setSurplusRefinement() command.

-refout specifies the output parameter of setAnisotropicRefinement().

-reftype is a string specifying the refinement criteria. See ./tasgrid -listtypes for accepted values for this option.

48

-outputfile is an optional matrix file. At the end of the program, tasgird will write in the file the needed points,
i.e., the ones that are not yet associated with values of the interpolated function. The matrix file will
have getNumPoints() number of rows and getNumDimensions() number of columns. The first points
will be on the first row, the second on the second row ...

-print write out the same data as in the -outputfile but to the cout stream.

6.25 Command: -cancelrefine

./tasgrid -cancelrefine <option1> <value1> <option2> <value2>

Calls clearRefinement()

-gridfile this is the file with an already created grid.

6.26 Command: -getpoly

./tasgrid -getpoly <option1> <value1> <option2> <value2>

Calls getGlobalPolynomialSpace()

-gridfile this is the file with an already created grid.

-type is a string specifying the type parameter of makeGlobalGrid(). See ./tasgrid -listtypes for the list of
accepted strings, any type starting with i sets the interpolation parameter to True, any type starting
with q sets interpolation parameter to False.

-outputfile is an optional matrix file. The list of multi-indexes is written to the file.

-print write out the same data as in the -outputfile but to the cout stream.

6.27 Command: -summary

./tasgrid -summary -gridfile <filename>

Reads the grid in the provided file and prints short summary about the grid.

-gridfile this is the file with an already created grid.

49

6.28 Commands: -getsurpluses, -getpointindexes

./tasgrid -getsurpluses/-getpointindexes <option1> <value1>

Calls getSurpluses() or getPointIndexes().

-gridfile this is the file with an already created grid.

-outputfile is an optional matrix file. The list of surpluses or multi-indexes is written to the file.

-print write out the same data as in the -outputfile but to the cout stream.

6.29 Matrix File Format

A matrix file is a simple text file that describes a two dimensional array of real numbers. The file contains
two integers on the first line indicating the number of rows and columns. Those are followed by the actual
entries of the matrix one row at a time.

The file containing

3 4
1.0 2.0 3.0 4.0
5.0 6.0 7.0 8.0
9.0 10.0 11.0 12.0

represents the matrix  1 2 3 4
5 6 7 8
9 10 11 12


A matrix file may contain only one row or column, e.g.,

1 2
13.0 14.0

All files used by tasgrid have the above format with three exceptions. The -gridfile option contains
saved sparse grids and it is not intended for editing outside of the tasgrid calls. The -anisotropyfile requires
a matrix with one column and it should contain only integers. The -customrulefile has special format is
described in Appendix A.

50

7 MATLAB Interface

The MATLAB interface to tasgrid consists of several functions that call various tasgrid commands and read
and write matrix files. Unlike most MATLAB interfaces, this is code does not use .mex files, but rather sys-
tem commands and text files. In a nut shell, MATLAB tsgMake*** functions take a user specified name and
create a MATLAB object and a file generated by tasgrid option -gridfile (or TasmanianSparseGrid::write()
function). The MATLAB object is used to reference the specific grid file and is needed by most other
functions. Here are some notes to keep in mind:

• Before using the interface you must manually edit the tsgGetPath.m file!

• The MATLAB interface requires that MATLAB is able to call external commands and the tasgrid
executable in particular.

• The MATLAB interface also requires access to a folder where the files can be written.

• Each grid has a user specified name, that is a string which gets appended at the beginning of the file
name.

• The tsgDeleteGrid(), tsgDeleteGridByName() and tsgListGridsByName() functions allow for cleaning
the files in the temporary folder.

• Every MATLAB function corresponds to one tasgrid command.

• Every function comes with help comments that can be accessed by typing

help tsgFunctionName

• Note that it is recommended to add the folder with the MATLAB interface to your MATLAB path.

• All input variables follow naming convention where the first character specifies the type of the vari-
able:

i stands for integer
s stands for string
f stands for real number
l stands for list
v stands for vector, i.e., row or column matrix

m stands for matrix, i.e., two dimensional array

7.1 function tsgGetPaths()

[sFiles, sTasGrid] = tsgGetPaths()

You must edit the two strings in this file.

sTasGrid is a string containing the path to the tasgrid executable (including the name of the executable).

sFiles is the path to a folder where MATLAB has read/write permission. Files will be created and deleted in
this folder.

51

7.2 functions tsgReadMatrix() and tsgWriteMatrix()

Those functions are used internally to read from or write to matrix files. Those functions should not be
called directly.

7.3 functions tsgCleanTempFiles()

Those functions are used internally to clean the temporary files.

7.4 function tsgListGridsByName()

Scans the work folder and lists the existing grids regardless whether those are currently associated with
MATLAB objects. The names can be used for calls to tsgDeleteGridByName() and tsgReloadGrid().

7.5 function tsgDeleteGrid()/tsgDeleteGridByName()

Deleting the MATLAB object doesn’t remove the files from the work folder, thus tsgDeleteGrid() has to
be explicitly called to remove the files associated with the grid. If the MATLAB object has been lost (i.e.,
cleared by accident), then the grid files can be deleted by specifying just the name for tsgDeleteGridBy-
Name(), see also tsgListGridsByName().

7.6 function tsgReloadGrid()

Creates a new MATLAB object file for a grid with existing files in the work folder. This function can restore
access to a grid if the grid object has been lost. This function can also create aliases between two grids
which can be dangerous, see section 7.12. This function can also be used to gain access to a file generated
by tasgrid -gridfile option or TasmanianSparseGrid::write() function, just generate the file, move it to the
work folder, rename it to <name> FileG, and call lGrid = tsgReloadGrid(<name>).

7.7 function tsgCopyGrid()

Creates a duplicate of an existing grid, this function creates a new MATLAB object and a new grid file in
the work folder.

7.8 function tsgWriteCustomRuleFile()

Writes a file with a custom quadrature or interpolation rule, see Appendix A and the function help for more
details.

52

7.9 function tsgExample()

tsgExample()

This function contains sample code that replicated the C++ example. This is a demonstration on the
proper way to call the MATLAB functions.

7.10 Other functions

All other functions correspond to calls to tasgrid with various options. The names are self-explanatory. Use
the MATLAB help command to see the syntax of each function.

7.11 Saving a Grid

You can save the lGrid object just like any other MATLAB object. However, a saved grid has two com-
ponents, the lGrid object and the files associated with the grid that are stored in the folder specified by
tsgGetPath(). The files in the temporary folder will be persistent until either tsgDeleteGrid() is called or the
files are manually deleted. The only exception is that the tsgExample() function will overwrite any grids with
names starting with tsgExample1 through tsgExample10. Note that modifying tsgGetPath() may result in
the code not being able to find the needed files and hence the grid object may be invalidated.

7.12 Avoiding Some Problems

• Make sure to call tsgDeleteGrid() as soon as you are done with a grid, this will avoid clutter in the
temporary folder.

• If you clear an lGrid object without calling tsgDeleteGrid() (i.e., you exit MATLAB without saving),
then make sure to use tsgListGridsByName() and tsgDeleteGridByName() to safely delete the “lost”
grids.

• Working with the MATLAB interface is very similar to working with dynamical memory, where the
data is stored on the disk as opposed to the RAM and the lGrid object is the pointer. Also, the grids
are associated by name as opposed to a memory address.

• If multiple users are sharing the same temporary folder, then it would be useful if they come up with
a naming convention that prevents two users from using the same grid name. For example, instead of
both users creating a grid named mygrid1, the users should name their grids johngrid1 and janegrid1.

• All of the grid data for all of the grids is stored in the same folder. Anyone with access to the temporary
folder has full access to all of the sparse grid data.

• If two users have separate copied of tsgGetPaths(), then they can use separate storage folders without
any of the multi-user considerations. This is true even if all other files are shared, including the tasgrid
executable and libtsg library.

53

A Custom Rule Specification

The custom rule functionality allows the creation of a sparse grid using a rule other than the ones imple-
mented in the code. The custom rule is defined via a file with tables that list the levels, number of points per
level, exactness of the quadrature at each level, points and their associated weights. Currently, the custom
rules work only with global grids and hence the interpolant associated with the rule is a global interpolant
using Lagrange polynomials.

The custom rule is defined via custom rule file, with the following format:

line 1: should begin with the string description: and it should be followed by a string with a short
description of the rule. This string is used only for human readability purposes.

line 2: should begin with the string levels: followed by an integer indicating the total number of rule
levels defined in the file.

After the description and total number of levels have been defined, the file should contain a sequence of
integers describing the number of points and exactness, followed by a sequence of floating point numbers
listing the points and weights.

integers: is a sequence of integer pairs where the first integer indicates the number of points for the current
level and the second integer indicates the exactness of the rule. For example, the first 3 levels of
the Gauss-Legendre rule will be described via the sequence 1 1 2 3 3 5, while the first 3 levels of the
Clenshaw-Curtis rule will be described via 1 1 3 3 5 5.

floats: is a sequence of floating point pairs describing the weights and points. The first number of the pair is
the quadrature weight, while the second number if the abscissa. The points associated with the first
level are listed in the first pairs. The second set of pairs lists the points associated with the second
level and so on.

Here is an example of Gauss-Legendre 3 level rule for reference purposes:

description: Gauss-Legendre rule
levels: 3
1 1 2 3 3 5
2.0 0.0
1.0 -0.5774 1.0 0.5774
0.5556 -0.7746 0.8889 0.0 0.5556 0.7746

54

Similarly, a level 3 Clenshaw-Curtis rule can be defined as

description: Clenshaw-Curtis rule
levels: 3
1 1 3 3 5 5
2.0 0.0
0.333 1.0 1.333 0.0 0.333 -1.0
0.8 0.0 0.067 -1.0 0.067 1.0 0.533 -0.707 0.533 0.707

Several notes on the custom rule file format:

- TASMANIAN works with double precision and hence a custom rule should be defined with the cor-
responding number of significant digits. The examples above are for illustrative purposes only.

- The order of points within each level is irrelevant. TASMANIAN will internally index the points.

- Points that are within distance of 10−12 of each other will be treated as the same point. Thus, re-
peated (nested) points can be automatically handled by the code. The tolerance can be adjusted in
tsgHardcodedConstants.hpp by modifying the NUM TOL constant,

- Naturally, TASMANIAN cannot create a sparse grid that requires a one dimensional rule with level
higher than what is provided in the file. Predicting the required number of levels can be hard in the
case of anisotropic iexact/qexact grids, the code will print a warning message if the custom rule does
not provide a sufficient number of points.

- The exactness constants are used only if qexact is used for makeGlobalGrid or the getPolynomialIn-
dexes functionality. If qexact is not used, then the exactness integers can be set to 0.

- The quadrature weights are used only if integration is performed. If no quadrature or integration is
used, then the weights can all be set to 0.

- If a custom rule is used together with TransformAB, then the transform will assume that the rule is
defined on the canonical interval [−1, 1]. A custom rule can be defined on any arbitrary interval,
however, for any interval different from [−1, 1] the TransformAB functions should not be used.

- The code comes with an example custom rule file that defines 9 levels of the Gauss-Legendre-
Patterson rule, a.k.a., nested Gauss-Legendre rule.

55

REFERENCES

[1] S. ACHARJEE AND N. ZABARAS, A non-intrusive stochastic galerkin approach for modeling uncer-
tainty propagation in deformation processes, Computers & structures, 85 (2007), pp. 244–254. 2

[2] N. AGARWAL AND N. R. ALURU, A domain adaptive stochastic collocation approach for analysis of
mems under uncertainties, Journal of Computational Physics, 228 (2009), pp. 7662–7688. 2

[3] V. BARTHELMANN, E. NOVAK, AND K. RITTER, High dimensional polynomial interpolation on
sparse grids, Advances in Computational Mathematics, 12 (2000), pp. 273–288. 2

[4] J. BECK, F. NOBILE, L. TAMELLINI, AND R. TEMPONE, Convergence of quasi-optimal stochas-
tic galerkin methods for a class of pdes with random coefficients, Computers & Mathematics with
Applications, 67 (2014), pp. 732–751. 8

[5] M. A. CHKIFA, On the Lebesgue constant of Leja sequences for the complex unit disk and of their real
projection, Journal of Approximation Theory, 166 (2013), pp. 176–200. 10, 11

[6] , On the lebesgue constant of a new type of R-leja sequences, tech. rep., ORNL/TM-2015/657,
Oak Ridge National Laboratory., 2015. 11

[7] C. W. CLENSHAW AND A. R. CURTIS, A method for numerical integration on an automatic computer,
Numerische Mathematik, 2 (1960), pp. 197–205. 10

[8] S. DE MARCHI, On Leja sequences: some results and applications, Applied Mathematics and Com-
putation, 152 (2004), pp. 621–647. 11

[9] M. ELDRED, C. WEBSTER, AND P. CONSTANTINE, Evaluation of non-intrusive approaches for
wiener-askey generalized polynomial chaos, in Proceedings of the 10th AIAA Non-Deterministic Ap-
proaches Conference, number AIAA-2008-1892, Schaumburg, IL, vol. 117, 2008, p. 189. 2

[10] L. FEJÉR, On the infinite sequences arising in the theories of harmonic analysis, of interpolation, and
of mechanical quadratures, Bulletin of the American Mathematical Society, 39 (1933), pp. 521–534.
10

[11] T. GERSTNER AND M. GRIEBEL, Numerical integration using sparse grids, Numerical algorithms,
18 (1998), pp. 209–232. 2

[12] , Dimension–adaptive tensor–product quadrature, Computing, 71 (2003), pp. 65–87. 2

[13] M. GRIEBEL, Adaptive sparse grid multilevel methods for elliptic pdes based on finite differences,
Computing, 61 (1998), pp. 151–179. 2, 14, 21

[14] M. GUNZBURGER, C. TRENCHEA, AND C. WEBSTER, A generalized stochastic collocation ap-
proach to constrained optimization for random data identification problems, Tech. Rep. ORNL/TM-
2012/185, Oak Ridge National Laboratory, 2012. 2

[15] M. GUNZBURGER, C. WEBSTER, AND G. ZHANG, An adaptive wavelet stochastic collocation
method for irregular solutions of partial differential equations with random input data, Tech. Rep.
ORNL/TM-2012/186, Oak Ridge National Laboratory, 2012. 2, 21

[16] A. KLIMKE AND B. WOHLMUTH, Algorithm 847: Spinterp: piecewise multilinear hierarchical
sparse grid interpolation in matlab, ACM Transactions on Mathematical Software (TOMS), 31 (2005),
pp. 561–579. 2, 14

56

[17] X. MA AND N. ZABARAS, An adaptive hierarchical sparse grid collocation algorithm for the solution
of stochastic differential equations, Journal of Computational Physics, 228 (2009), pp. 3084–3113. 2,
14

[18] F. NOBILE, R. TEMPONE, AND C. G. WEBSTER, An anisotropic sparse grid stochastic collocation
method for partial differential equations with random input data, SIAM Journal on Numerical Analy-
sis, 46 (2008), pp. 2411–2442. 2

[19] F. NOBILE, R. TEMPONE, AND C. G. WEBSTER, A sparse grid stochastic collocation method for
partial differential equations with random input data, SIAM Journal on Numerical Analysis, 46 (2008),
pp. 2309–2345. 2

[20] T. C. PATTERSON, The optimum addition of points to quadrature formulae, Mathematics of Computa-
tion, 22 (1968), pp. 847–856. 11

[21] S. A. SMOLYAK, Quadrature and interpolation formulas for tensor products of certain classes of
functions, Dokl. Akad. Nauk SSSR, 4 (1963), pp. 240–243 (English translation). 2

[22] M. STOYANOV, Hierarchy-direction selective approach for locally adaptive sparse grids, tech. rep.,
ORNL/TM-2013/384, Oak Ridge National Laboratory., 2013. 2, 3, 14, 16, 38

[23] M. K. STOYANOV AND C. G. WEBSTER, A dynamically adaptive sparse grid method for quasi-
optimal interpolation of multidimensional analytic functions, arXiv preprint arXiv:1508.01125,
(2015). 2, 3, 7, 8, 10, 11, 12, 37

[24] W. SWELDENS AND P. SCHRÖDER, Building your own wavelets at home, in Wavelets in the Geo-
sciences, Springer, 2000, pp. 72–107. 21

[25] G. ZHANG AND M. GUNZBURGER, Error analysis of a stochastic collocation method for parabolic
partial differential equations with random input data, SIAM Journal on Numerical Analysis, 50 (2012),
pp. 1922–1940. 2

[26] G. ZHANG, M. GUNZBURGER, AND W. ZHAO, A sparse grid method for multi-dimensional backward
stochastic differential equaitons, Journal of Computational Mathematics, 31 (2013), pp. 221–248. 2

57

v1.0

	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	ACKNOWLEDGEMENTS
	Quick Overview
	Global Grids
	General construction
	Approximation error
	Sequence Grid
	Refinement
	One dimensional rules

	Local Polynomial Grids
	Hierarchical interpolation rule
	Adaptive refinement
	One dimensional rules
	Wavelets

	Compilation
	 Unix Based Systems (Linux/MacOSX)
	Windows using Mircosoft Visual C++ 2015

	LIBTASMANIANSPARSEGRIDS (libtsg)
	Constructor TasmanianSparseGrid()
	Destructor TasmanianSparseGrid()
	function getVersion()
	function getLicense()
	function makeGlobalGrid()
	function makeSequenceGrid()
	function makeLocalPolynomialGrid()
	function makeWaveletGrid()
	function makeFullTensorGrid()
	functions recycle***Grid()
	functions update***Grid()
	functions update***Grid()
	function write()
	function read()
	function write()
	function read()
	function setTransformAB()
	function setDomainTransform()
	function isSetDomainTransform()
	function clearTransformAB()
	function clearTransformAB()
	function getTransformAB()
	function getDomainTransform()
	function getNumDimensions()
	function getNumOutputs()
	function getOneDRule()
	function getOneDRuleDescription()
	function getCustomRuleDescription()
	function getAlpha()/getBeta()
	function getOrder()
	function getNum***()
	function get***Points()
	function getWeights()
	function getQuadratureWeights()
	function getInterpolantWeights()
	function getInterpolationWeights()
	function getNumNeededPoints()
	function loadNeededPoints()
	function evaluate()
	function integrate()
	function is***()
	function setRefinement()
	function setAnisotropicRefinement()
	function setSurplusRefinement() - global version
	function setSurplusRefinement() - local version
	function clearRefinement()
	function getPolynomialIndexes()
	function getPolynomialSpace()
	function printStats()
	functions getSurpluses() and getPointIndexes()
	Examples

	TASGRID
	Basic Usage
	Command: -h, help, -help, –help
	Command: -listtypes
	Command: -version or -info
	Command: -test
	Command: -makegrid
	Command: -makeglobal
	Command: -makesequence
	Command: -makelocalpoly
	Command: -makewavelet
	Command: -makequadrature
	Command: -recycle
	Command: -makeupdate
	Command: -getquadrature
	Command: -getpoints
	Command: -getinterweights
	Command: -getneededpoints
	Command: -loadvalues
	Command: -evaluate
	Command: -integrate
	Command: -getanisotropy
	Command: -refine
	Command: -refineaniso
	Command: -refinesurp
	Command: -cancelrefine
	Command: -getpoly
	Command: -summary
	Commands: -getsurpluses, -getpointindexes
	Matrix File Format

	MATLAB Interface
	function tsgGetPaths()
	functions tsgReadMatrix() and tsgWriteMatrix()
	functions tsgCleanTempFiles()
	function tsgListGridsByName()
	function tsgDeleteGrid()/tsgDeleteGridByName()
	function tsgReloadGrid()
	function tsgCopyGrid()
	function tsgWriteCustomRuleFile()
	function tsgExample()
	Other functions
	Saving a Grid
	Avoiding Some Problems

	Custom Rule Specification

